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Abstract

Machine learning on encrypted data can address the concerns
related to privacy and legality of sharing sensitive data with
untrustworthy service providers, while leveraging their re-
sources to facilitate extraction of valuable insights from oth-
erwise non-shareable data. Fully Homomorphic Encryption
(FHE) is a promising technique to enable machine learning
and inferencing while providing strict guarantees against in-
formation leakage. Since deep convolutional neural networks
(CNNs) have become the machine learning tool of choice
in several applications, several attempts have been made to
harness CNNs to extract insights from encrypted data. How-
ever, existing works focus only on ensuring data security
and ignore security of model parameters. They also report
high level implementations without providing rigorous anal-
ysis of the accuracy, security, and speed trade-offs involved
in the FHE implementation of generic primitive operators of
a CNN such as convolution, non-linear activation, and pool-
ing. In this work, we consider a Machine Learning as a Ser-
vice (MLaaS) scenario where both input data and model pa-
rameters are secured using FHE. Using the CKKS scheme
available in the open-source HElib library, we show that op-
erational parameters of the chosen FHE scheme such as the
degree of the cyclotomic polynomial, depth limitations of the
underlying leveled HE scheme, and the computational pre-
cision parameters have a major impact on the design of the
machine learning model (especially, the choice of the acti-
vation function and pooling method). Our empirical study
shows that choice of aforementioned design parameters re-
sult in significant trade-offs between accuracy, security level,
and computational time. Encrypted inference experiments on
the MNIST dataset indicate that other design choices such as
ciphertext packing strategy and parallelization using multi-
threading are also critical in determining the throughput and
latency of the inference process.

Introduction
Deep neural networks have proven to be a promising tech-
nology due to their ability to achieve competitive machine
learning performance in diverse domains including com-
puter vision. Ever since AlexNet achieved a top-5 error
rate of 16.4% using Convolutional Neural Networks (CNN)
for the image classification task on the ImageNet dataset
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Figure 1: In a conventional Machine Learning as a Ser-
vice (MLaaS) scenario, both the data and model parameters
are unencrypted. Existing works on secure inference assume
only the data is encrypted. Our proposed approach encrypts
both the data and model parameters.

of 1.2 million high-resolution images as part of ILVSRC
2012 (Krizhevsky, Sutskever, and Hinton 2012) competi-
tion, various CNN architectures (Simonyan and Zisserman
2014)(Szegedy et al. 2015)(Zeiler and Fergus 2013) have
been developed to improve accuracy and other performance
metrics. Though the continuous improvement in the per-
formance of CNNs has hastened their adoption in broader
computer vision applications such as mobile and embedded
devices (Howard et al. 2017)(Phan et al. 2020), the large
computing/memory resource requirements of CNNs present
practical challenges in applying them in many applications.
This is often overcome by outsourcing the network train-
ing and/or inference computations to the Cloud, which is
commonly referred to as Machine Learning as a Service
(MLaaS).

In MLaaS, there are three parties: (i) the end-user, who
requires predictions on sensitive data, (ii) the cloud service
provider, who has access to large computational resources,
and (iii) the model owner, who has developed the inference
model, trained using machine learning algorithms that may
be proprietary. In conventional MLaaS scenarios, the cloud
service providers typically have access to the inference mod-
els as well as the content of the query data. In many appli-
cations, such access to data and the model is undesirable
because the query data/models could reveal sensitive infor-



mation. Moreover, sharing of such data may be prohibited
under emerging privacy regulations such as GDPR. This has
led to the development of a variety of privacy preserving
machine learning algorithms. In this paper, we focus on a
specific class of privacy preserving machine learning algo-
rithms that rely on Homomorphic Encryption (HE).

Most of the approaches presented in the literature for en-
crypted inference encrypt only the input data and do not en-
crypt the model parameters. This is based on the assumption
that the same entity owns the model and runs the cloud ser-
vice. However, access to the model parameters could lead
to competitive disadvantage for the model owner, when the
model owner and cloud service provider are separate entities
(e.g., a start-up providing the MLaaS service on a Amazon
or Google cloud). Hence, it becomes imperative to protect
both the input data and model parameters in such scenarios
(see Figure 1). (Bost et al. 2015) discussed about encrypted
models in the context of Hyperplane Decision, Navie Bayes
and Decision Tree algorithm. In this work, we focus on the
scenario where the model owner and cloud service provider
are separate entities and the cloud provider is not trusted.
Therefore, we encrypt the model parameters1 in addition to
the input data using the end-user’s public key (as shown on
Figure 1). The advantage of this approach is that the cloud
service provider cannot derive any benefit from the model
directly. The disadvantage of model parameter re-encryption
using the specific client’s public key is the increased compu-
tation and communication burden of the model owner.

Contributions
The objective of this work is to develop the component
building blocks for enabling generic CNN inference on
encrypted data. We use the implementation of the CKKS
scheme available in the HElib library (Halevi and Shoup
2020) for all our analysis. However, we note that the lack of
a bootstrapping implementation for CKKS makes it impos-
sible to perform inferencing on any arbitrary CNN. Hence,
we design depth-constrained CNNs that operate within the
multiplicative depth limitations of the underlying leveled HE
scheme. Our contributions are four-fold:

1. MLaaS scenario for convolution neural networks is pro-
posed where both the input data and model parameters
are encrypted, thereby enabling a model owner to provide
the MLaaS service on an untrusted cloud.

2. CNN inference on encrypted data using the CKKS
scheme is presented, which eliminates the need for careful
model parameter quantization.

3. Implementation and performance analysis of illustrative
linear operators such as convolution and matrix multipli-
cation as well as non-linear operations such as ReLU and
maxpooling in the encrypted domain is provided.

4. Various multithreading strategies were explored and the
analysis revealed that the optimal strategy involves a com-
plex interplay between system resources and the compu-
tations involved.
1Note that the model architecture is still available to the cloud

service provider in the clear.

Background and Related Work
Homomorphic Encryption
Homomorphic encryption schemes enable a class of com-
putations on the ciphertexts (i.e., encrypted data) with-
out decrypting them (Acar et al. 2018). Let JxK denote
the encryption of value x using a public key pk. A cryp-
tosystem is said to be fully homomorphic (FHE) (Gentry
2009) if it enables computation of any arbitrary function
f(x1, x2, · · · , xd) in the encrypted domain. In other words,
there exists a function g such that f(x1, x2, · · · , xd) =
D (g(Jx1K, Jx2K, · · · JxdK), sk), where D represents the cor-
responding decryption mechanism of the cryptosystem us-
ing private/secret key sk.

Recently, a number of FHE schemes have been proposed
based on the hardness of the Ring Learning With Errors
(RWLE) problem. The most well-known examples of such
schemes are BFV (Brakerski 2012)(Fan and Vercauteren
2012), BGV (Brakerski, Gentry, and Vaikuntanathan 2014),
TFHE (Chillotti et al. 2020), and CKKS (Cheon et al. 2017)
cryptosystems, all of which support both additive and mul-
tiplicative homomorphism. Among the well-known FHE
schemes, only CKKS natively supports floating-point oper-
ations, albeit with approximate (limited precision) computa-
tions. Most of the previous attempts at encrypted inference
coarsely quantize the weights of a neural network in order
to satisfy the requirements of the underlying HE schemes
(Gilad-Bachrach et al. 2016; Lou and Jiang 2019). In this
paper, we explore the use of the CKKS scheme, which elim-
inates the need for transformations of operands as integers.

FHE is typically obtained by combining a leveled HE
scheme with a bootstrapping operation. Since each HE com-
putation increases the “noise” level of a ciphertext, a lev-
eled HE scheme has a (parameter-dependent) limit on the
computational (multiplicative) depth of the arithmetic circuit
that can be computed, while still allowing for meaningful
decryption. This limitation is overcome by using Gentry’s
bootstrapping technique (Gentry 2009), which “refreshes”
the ciphertext and reduces its noise level (at the cost of re-
lying on circular security). While bootstrapping can enable
computation of arithmetic circuits with arbitrary multiplica-
tive depth, it comes at a prohibitively high computational
cost. For some FHE constructs such as CKKS, there is no
existing implementation of true “Gentry-style” bootstrap-
ping. This leads to an intractable conundrum. While mod-
ern machine (deep) learning algorithms rely on their depth
to achieve good generalization performance (Poggio et al.
2017), deeper networks are inherently more difficult to com-
pute in the encrypted domain without bootstrapping. There-
fore, optimizing the computational depth to achieve an ac-
ceptable trade-off between accuracy and practical compu-
tational feasibility is one of the fundamental challenges in
encrypted deep learning.

Secure Machine Learning Using FHE
Every supervised machine learning algorithm involves two
steps: (i) learning the model from training data; (ii) infer-
ence on new unknown samples. We presume that an efficient
model has already been trained from data available in clear.



Our focus is on how to carry out encrypted inferencing with
minimal leakage of information for all the parties in MLaaS
while providing guaranteed privacy.

Privacy preserving machine learning can have different
challenges and threats based on what is required to be pri-
vate. In (Al-Rubaie and Chang 2019), various types of at-
tacks (e.g., reconstruction attacks, model inversion attacks,
membership inference attacks) that could potentially reveal
private/proprietary information from data/model have been
discussed. The work also presents various cryptographic and
non-cryptographic approaches to thwart these attacks. Key
techniques that have been explored to achieve privacy pre-
serving machine learning include differential privacy, secure
multiparty computation (SMPC), and homomorphic encryp-
tion. Homomorphic encryption has been considered more
suitable for the cloud-based applications, but its practical
feasibility is still in question. SMPC-based methods have
been generally deemed more practical, but it requires inter-
action between the client and server resulting in large com-
munication cost. Differential privacy techniques lack the for-
mal guarantees of security under assumptions of more con-
servative attack models.

Most of the recent work in privacy-preserving ma-
chine learning (Gilad-Bachrach et al. 2016)(Juvekar,
Vaikuntanathan, and Chandrakasan 2018) (Chou et al.
2018)(Dathathri et al. 2019) has primarily focused on se-
cure inference where the model has already been trained in
the clear. Once the model has been trained, these methods
use either SMPC or homomorphic encryption techniques to
enable inference. While CryptoNets (Gilad-Bachrach et al.
2016) rely only on homomorphic encryption to enable in-
ferencing over private input data, Gazelle (Juvekar, Vaikun-
tanathan, and Chandrakasan 2018) uses a combination of
homomorphic encryption and garbled circuits to achieve
two orders of magnitude speed improvement. Faster Cryp-
toNets (Chou et al. 2018) have demonstrated improved per-
formance over that of CryptoNets by leveraging sparsity
properties and reduced the amortized inference time from
minutes to seconds. CHET (Dathathri et al. 2019) provides
an optimizing compiler for Fully Homomorphic Neural Net-
work Inference. It basically provides high level user frame-
work to automate the tuning of parameters for security as
well as performance without degrading the accuracy. The
framework provides high level and low level intermediate
representations that can be linked with different homomor-
phic libraries. Their results showed that automated homo-
morphic circuits from the compiler outperform the circuits
that were manually tuned. An encrypted inference service
built on top of TensorFlow using secure multiparty computa-
tion is discussed in (Dahl et al. 2018). Encrypted model was
considered in (Bost et al. 2015) for Hyperplane Decision,
Naive Bayes, Decision Tree algorithms, but not convolution
neural network.

Convolutional Neural Network (CNN)
A CNN is a multi-layered neural network that is usually ap-
plied to image/video data. Let X(`) and Z(`) denote the
input and output of layer ` (` = 1, 2, · · · , D) in the network.
Each layer in the network performs specific arithmetic op-

erations on the outputs of the previous layer and passes the
result to the subsequent layer, i.e., X(`) = Z(` − 1) and
Z(0) is the raw input data. This structure allows higher-level
abstract features to be computed as non-linear functions of
lower-level features (starting with the raw data). The first
few layers of a CNN generally consists of the three types of
operations.

1. Convolution: This is a linear operation, where the input to
the layer2 (X) is convolved with a kernel (W ) to generate
a filtered output Y . Let Ai,j denote the element in the i-
th row and j-th column of a matrix A. Suppose that the
size of input X is (M × N) and the size of kernel W is
(P × Q). Typically, one can pad the input with zeros to
compute the filter responses at the edges. Let X̃ be the
zero-padded version of the input X .

Y m,n = 〈X̂m,n, Ŵ 〉, (1)

where 〈a, b〉 is the inner product of two vectors a and b,
Ŵ is the vectorized (flattened) version of the kernel W ,
and X̂m,n is the vectorized version of the input window
(a window of size P × Q with X̃m,n as the top-left el-
ement) selected from the padded image. For the sake of
simplicity, the stride length is assumed to be 1 in equation
(1).

2. Activation: In this step, a point-wise non-linear function
is applied to the filter responses. The commonly used acti-
vation functions are rectified linear unit (ReLU), sigmoid,
and hyperbolic tangent (tanh). In this paper, we consider
only the ReLU activation function, which is defined as
follows:

ReLU(a) = max(0, a) =

{
0, if a ≤ 0

a, if a > 0.
(2)

3. Pooling: This is typically used for dimensionality reduc-
tion, where multiple responses within a neighborhood are
pooled together. While max pooling is often used for se-
lecting the most dominant response in each neighborhood
and is a non-linear operation, mean pooling computes the
average response in each neighborhood and is a linear op-
eration. The final output (Z) of the activation and pool-
ing layers can be modeled as a function f of the filter
responses, i.e., Z = f(Y ), where f is non-linear.

After the initial layers, the data is flattened into a vec-
tor and a few fully connected (FC) layers are added to the
network. The output of each node in the FC layer is often
computed by applying a non-linear activation function to the
weighted average of its inputs, which includes a bias term
that always emits value 1. This can be mathematically rep-
resented as Z = f(WX), where W is the weight matrix
of the FC layer and f is the activation function. The final
layer in a CNN is usually a softmax layer that provides an
approximate probability distribution over the class labels.

2For the sake of convenience, we drop the layer index ` in the
subsequent discussion.



Proposed Approach
In this work, we employ a typical CNN architecture as an
illustrative example. Though FHE schemes allow arbitrary
computations on the encrypted data, two key challenges
need to be circumvented before applying a CNN on en-
crypted inputs. The first challenge is the appropriate packing
of input data to efficiently make use of the Single Instruction
Multiple Data (SIMD) operations. The next challenge stems
from the inherent inability of most FHE schemes to directly
compute non-linear functions (with the exception of polyno-
mials). Often, the non-linear function is approximated by an
iterative algorithm or a polynomial function. Since the ap-
proximation error is generally inversely proportional to the
computational depth (using more iterations or higher-degree
polynomials leads to less approximation error), the trade-off
between computational depth and accuracy must be care-
fully managed.

Convolution Operator: We employ the CKKS scheme
for encrypted operations. The native plaintext in the CKKS
scheme is a polynomial in the cyclotomic ring, which en-
ables packing multiple plaintext values into different “slots”
in the ciphertext. This ciphertext packing enables paral-
lelization of addition and multiplication operations through
SIMD operations. However, it must be emphasized that it
is not possible to randomly access values in the individual
slots of the ciphertext after packing. Since only a limited set
of operations (e.g., rotation of values in the slots) are pos-
sible within a ciphertext, the benefits of SIMD operations
can be fully realized only when there is minimal interaction
between the slots. Therefore, we follow a more conserva-
tive and straightforward approach to ciphertext packing that
amortizes the computational time by processing a batch of
images in parallel.

Let K be the number of slots available in the cipher-
text. Given a batch of K images X(1),X(2), · · · ,X(K),
where each image is of size M × N , we represent the en-
crypted image as a ciphertext matrix JXK of size M × N
as shown in Figure 2(a). The ciphertext JXKm,n contains
the encrypted values of pixel (m,n) from all the K im-
ages, i.e. JXKm,n =

[
Jx(1)m,nK, Jx(2)m,nK, · · · , Jx(K)

m,nK
]
. Sim-

ilarly, the encrypted convolution kernel is also represented
as a ciphertext matrix JW K of size P ×Q, where P ×Q is
the kernel size3. However, as shown in Figure 2(b), the en-
crypted weight value Jwp,qK is repeated across all the slots
of the ciphertext JW Kp,q .

While the above simple packing approach greatly in-
creases the memory requirement, it provides great simplicity
in terms of implementing the convolution operator. One can
directly treat the encrypted image matrix JXK and the en-
crypted kernel JW K as equivalent of the plaintext matrices
X and W , respectively, and compute the convolution re-
sults as the inner product between the vectorized versions of
the selected image window and the kernel. Thus, equation
(1) can be modified as follows:

3Encryption of the convolution kernel addresses the more gen-
eral scenario where the model provider may be different from the
cloud service provider.

JY Km,n = 〈JX̂Km,n, JŴ K〉. (3)

When there is no padding involved, the above approach
requires (M − P + 1)(N −Q+ 1)PQ ciphertext multipli-
cations (henceforth denoted as CT-CT mult) and ciphertext
additions (henceforth denoted as CT-CT add) and consumes
a multiplicative depth of 1.

Activation and Pooling Operators: In this paper, we im-
plement a ReLU function using a polynomial approxima-
tion. In (Gottemukkula 2020), a number of polynomial ap-
proximations have been proposed for the ReLU function.
Since one of our objectives is to minimize the computational
depth, we choose the following polynomial of degree 2 for
our approximation.

g(u) = 0.47 + 0.50u+ 0.09u2, u ∈ [−
√

2,
√

2]. (4)

A linear transformation may be required to limit u within
the appropriate range before the above polynomial approxi-
mation is applied. The polynomial approximation of ReLU
consumes only a multiplicative depth of 1 and requires 1 CT-
CT mult, 2 CT-PT mults (multiplication a ciphertext with a
plaintext operand), 2 CT-CT adds, and 1 CT-PT add (addi-
tion of a plaintext operand to a ciphertext) operations.

In terms of pooling, we consider mean pooling operator
in a 2× 2 neighborhood, which is a linear operation. While
mean pooling does not involve any ciphertext multiplication
(CT-CT mults), it does require 4 CT-CT adds and 1 CT-PT
mult. Our activation and pooling operations can be summa-
rized as follows:

JZKi,j = f (JY K2i−1,2j−1, JY K2i,2j−1, JY K2i−1,2j , JY K2i,2j) ,
(5)

where

f(a, b, c, d) = (g(a) + g(b) + g(c) + g(d))/4. (6)

Experimental Results
Environment
For FHE, we chose IBM’s open-source library named HE-
lib (Halevi and Shoup 2020) version 1.0.1. Since FHE based
experiments require signficant compute capability and effi-
ciency, we chose the natural API interface of HElib library
through C++. The configuration details of the computing en-
vironment are listed below:

• System used: Virtual Machine ppc64le POWER9,

• CPUs: 112 CPUs with 14 sockets, 1 core/socket, 8 threads
per core

• Memory: RAM - 511 GB,

• Operating system: Fedora Core 32



𝑥11
(1)

𝑥12
(1) . . 𝑥1𝑁

(1)

𝑥21
(1)

𝑥22
(1) . . 𝑥2𝑁

(1)

. . . . .

. . . . .

𝑥𝑀1
(1)

𝑥𝑀2
(1) . . 𝑥𝑀𝑁

(1)

𝑥11
(2)

𝑥12
(2) . . 𝑥1𝑁

(2)

𝑥21
(2)

𝑥22
(2) . . 𝑥2𝑁

(2)

. . . . .

. . . . .

𝑥𝑀1
(2)

𝑥𝑀2
(2) . . 𝑥𝑀𝑁

(2)

𝑥11
(𝐾)

𝑥12
(𝐾) . . 𝑥1𝑁

(𝐾)

𝑥21
(𝐾)

𝑥22
(𝐾) . . 𝑥2𝑁

(𝐾)

. . . . .

. . . . .

𝑥𝑀1
(𝐾)

𝑥𝑀2
(𝐾) . . 𝑥𝑀𝑁

(𝐾)

…

Image X(1) Image X(2) Image X(K)

𝐗 11 𝐗 12 . . 𝐗 1𝑁

𝐗 21 𝐗 22 . . 𝐗 2𝑁

. . . . .

. . . . .

𝐗 𝑀1 𝐗 𝑀2 . . 𝐗 𝑀𝑁

Encrypted Image 𝐗

𝑥11
(1)

𝑥11
(2)

. . 𝑥11
(𝐾)

Ciphertext 𝐗 11

𝑥𝑀𝑁
(1)

𝑥𝑀𝑁
(2)

. . 𝑥𝑀𝑁
(𝐾)

Ciphertext 𝐗 𝑀𝑁

…
(a)

𝑤11 . 𝑤1𝑄

. . .

𝑤𝑃1 . 𝑤𝑃𝑄

Convolution Kernel

𝐖 11 . 𝐖 1𝑄

. . .

𝐖 𝑃1 . 𝐖 𝑃𝑄

Encrypted 

Kernel 𝐖

𝑤11 𝑤11 . . 𝑤11 Ciphertext 𝐖 11

𝑤𝑃𝑄 𝑤𝑃𝑄 . . 𝑤𝑃𝑄 Ciphertext 𝐖 𝑃𝑄

(b)

Figure 2: Ciphertext packing for batched inference. (a) Ciphertext JXKm,n contains the encrypted values of pixel Jx(·)m,nK from
all the K images in a batch, where K is the number of slots in the ciphertext. (b) Ciphertext JW Kp,q contains the encrypted
value of kernel weight Jwp,qK in all the K slots.

Impact of FHE parameters
Three key parameters define the operational characteristics
of the FHE scheme and determine the security level (λ). The
plaintext space of CKKS is the set of polynomials in the
cyclotomic ring Z[X]/(Φm(X)), where Φm(X) is the mth

cyclotomic polynomial with degree given by Euler’s totient
φ(m). The number of slots (K) in the ciphertext is given
by K = φ(m)/2. The second key parameter is L, which
is the bitsize of the modulus of a freshly encrypted cipher-
text. Since we are using a leveled HE scheme, L determines
the depth of the circuit that can be evaluated without boot-
strapping. Increasing L allows more computations (multipli-
cations) to be performed before hitting the noise threshold.
Finally, the parameter r determines the computational preci-
sion in the encrypted domain. While larger values of m (and
hence φ(m)) increase the security level λ, larger values of
L and r generally decrease the security. In our experiments,
we choose m = 216 (corresponding to φ(m) = 32768 and
K = 16384), r = 35, and vary L depending on the compu-
tational depth required.

We first evaluate the impact of the depth parameter L on
the computational time, security level, and ciphertext size.
For measuring the computational time, we consider the aver-

age time required for the adding/multiplying two ciphertexts
(filled with constant values in all the slots) over 1000 trials.
As shown in Figure 3, increasing L increases the computa-
tional time and ciphertext size in a linear fashion. Moreover,
the rate of increase is much higher for multiplication of two
ciphertexts (CT-CT mult) than for the addition of two ci-
phertexts (CT-CT add). Our analysis also indicates that for
the first multiplication to be successful, a minimum value of
L = 200 bits is required and each additional multiplication
in the circuit (increase in the multiplicative depth by 1) re-
quires an increase in the value of L by approximately 100
bits.

It must be highlighted that the impact of L on the secu-
rity estimate (λ) is non-linear. Note that evaluation of deeper
(multiplicative depth) circuits would require large values of
L. This in turn would require a large increase in the value
of m to maintain the same level of security, consequently
slowing down the computations significantly as well as in-
creasing the memory requirements (due to larger ciphertext
sizes). Therefore, it is critical to constrain the depth parame-
ter L to a reasonable value and design the machine learning
model to fit the depth constraint.



(a) (b) (c)

Figure 3: Impact of the depth parameter L on (a) computational time, (b) security level, and (c) ciphertext size. For this
experiment, the value of m and r are set to 216 and 35, respectively. The computational time is the average time required for
adding/multiplying two ciphertexts over 1000 trials.

Dataset and Inference Results
We use the MNIST dataset for our experiments. This dataset
consists of 60000 28× 28 grayscale images of the 10 digits
(0-9), along with a test set of 10000 images. We designed
a simple CNN model that consists of a single convolutional
layer with 28 filters (each having a kernel size of 3 × 3)
without any padding, followed by ActPool1 layer (polyno-
mial approximation of ReLU and mean pooling), a flatten-
ing layer (whose output dimension is 13×13×28 = 4732),
a single fully connected layer of size 4732 × 10, and a fi-
nal softmax layer. The CNN is trained using the Keras li-
brary for 10 epochs using a sparse categorical crossentropy
loss function and ADAM optimizer with a learning rate
of 0.01. The test accuracy of this simple CNN model on
plaintext images was found to be 97.86%, which is only
marginally lower than that of a CNN where the approximate
ReLU function is replaced with the standard ReLU function
(98.39%).

Next, we focus on the problem of encrypted inference
where both the inputs to the CNN and weights of the net-
work are encrypted. To implement inference based on the
above simple CNN model, the depth parameter L was set
to 600 and the values of m = 216 and r = 35 were re-
tained. The conservative security estimate based on these pa-
rameters is 128 bits, which is obtained by using an in-built
library call in HElib. Note that the inference process does
not require the computation of the softmax function, which
is monotonic in nature. Thus, the user can decrypt the out-
put of the fully connected layer to infer the predicted class,
which is the class with the maximum output at the FC layer.
Based on the above HE parameters, the number of slots (K)
available is more than the number of test images (10000).
Thus, the complete inference process could be executed in
the encrypted domain in one batch without any loss of test
accuracy (97.86%).

The time required for the execution of each layer in the
CNN during encrypted inference is shown in Table 1. It
must be emphasized that the reported timings in Table 1 are
for evaluating a single filter on a single thread. The results
for the complete network (all 28 filters) are shown in the
next sub-section on multi-threading. As one would expect,

the convolution layer is primary bottleneck in terms of num-
ber of computations. On the other hand, the fully connected
(FC) layer presents a significant challenge in terms of mem-
ory bottleneck. Even for a single filter, the FC layer requires
holding ((M − P + 1)(N −Q+ 1)(R + 1)/4) ciphertexts
in memory, where R is the number of classes ((R = 10 for
MNIST). The number of ciphertexts gets inflated by a fac-
tor of 28 when all the filters are considered, which makes
parallelization more difficult.

Parallelization using multi-threading
HElib supports thread level parallelism (inherited from the
underlying NTL library), which can speed up the execution
time. Theoretically, the design of the proposed simple CNN
allows us to compute the response of each convolution filter
as well as the subsequent activation, pooling, and FC lay-
ers independently. However, in practice this was not feasible
due to memory constraints. Moreover, our computing envi-
ronment has 112 CPUs, but the model has only 28 filters.
Therefore, to make the best use of the available resources
we had to implement a nested multi-threading strategy.

In the nested multi-threading strategy, we spawn F (we
choose F = 14 or F = 28) threads for the filters, and
each filter thread in turn spawns C convolution threads (we
choose C = 1, 3, 5 or 7). Each convolutional thread oper-
ates on a horizontal partition of the full image. For example,
whenC = 7, the 28×28 image is partitioned into 7 horizon-
tal sub-images with appropriate overlap (to avoid boundary
issues). Since the approximate RELU is a pixel-wise opera-
tion, it can be applied to each horizontal partition indepen-
dently. But since the mean pool operation could span across
partitions, we have to wait for all the convolution threads to
complete before meanpool is applied. Finally, due to mem-
ory constraints, we could not proceed with the FC layer di-
rectly. Instead, we waited for all the filter threads to com-
plete and then spawn H new threads, one for each of the 10
classes (columns of the FC layer matrix). As earlier, theseH
class threads further spawn J channel threads to parallelize
the matrix multiplication task along rows of the FC layer
matrix.

Figure 4 shows the execution times for the above nested



Operation Execution Time (in seconds) for Single Filter and Single Thread
Convolution 487.4

Approximate ReLU 102.1
Mean pooling 16.9

Fully Connected 123.4
Total (including overhead) 812.6

Table 1: Execution time for different layers of the proposed simple CNN model.

Figure 4: Execution time for various number of filter and
convolution threads. In this experiment, we fix the number
of class and channel threads to 10 and 1, respectively.

multi-threading strategy. For this experiment, we fixH = 10
and J = 1 and vary F and C. From this figure, we can ob-
serve that having more filter threads generally leads to faster
execution. Since the maximum number of available threads
is 112, we observe that utilizing only 70-80 threads provides
the optimal results because it achieves the best compromise
between the number of threads and thread efficiency. In par-
ticular, when F = 28 and C = 3, 84 threads are utilized in
total and it results in the lowest execution time of 864 sec-
onds. Similarly, when the number of channel threads J is
increased, the best results were obtained when J = 7 lead-
ing to a total execution time of 561 seconds.

Thus, the proposed multi-threading strategy leads to ap-
proximately 40 times improvement over the time required
for computing all the 28 filters on a single thread (28 ×
812[Table1] = 22736 seconds). This is achieved by utiliz-
ing 70 − 80 threads on average. If the memory constraints
can be surmounted, there is scope for further refinement in
the proposed multi-threaded strategy.

It must be emphasized that the values reported in the
above paragraphs are the actual execution times and not the
amortized time. Since K images are processed in parallel
exploiting the SIMD mechanism, the amortized time per im-
age could be orders of magnitude lower. Since K = 16384
in our experiments, the amortized execution time for infer-
ence on a single image can be estimated as 34 milliseconds.
Note that most of the reported literature on inference based
on encrypted MNIST data (e.g., (Gilad-Bachrach et al. 2016;
Chou et al. 2018)) use the BFV encryption scheme available

in the Microsoft SEAL library implemented on a x86 plat-
form. Hence, it is not possible to directly compare the exe-
cution times reported in this work with those reported in the
literature. However, we do note that the wall-clock run time
reported in (Gilad-Bachrach et al. 2016) is 250 seconds, with
only 10 5 × 5 filters and a stride length of 2, which is com-
parable to our run time of 561 seconds (with 28 filters and a
stride length of 1). Moreover, unlike (Gilad-Bachrach et al.
2016), the weights of the convolution and fully-connected
layers are encrypted in our proposed implementation.

It must be highlighted that the ciphertext packing strat-
egy used in this work has high latency for a single inference.
This could be addressed using different packing strategies as
discussed in (Brutzkus, Gilad-Bachrach, and Elisha 2019),
which can reduce the latency at the cost of decreasing the
throughput. For example, for single image inference with
a different packing strategy (the entire image is encrypted
within a single ciphertext), we were able to achieve a to-
tal inference time of 8.8 seconds with encrypted model pa-
rameters. When the model parameters are not encrypted, the
latency can be further reduced to 2.5 seconds, which is com-
parable to the latency of 2.2 seconds reported in (Brutzkus,
Gilad-Bachrach, and Elisha 2019).

Conclusions and Future Work
In this paper, we attempted to address the computation com-
plexity in a convolutional deep neural network for encrypted
processing. The approach presented in the paper describes
a secure way to compute convolution, non-linear activation
and pooling layers using power of the CKKS FHE scheme.
We exploited two features to tame the complexity: SIMD
ciphertext packing and thread level parallelism. In addition,
we empirically set the depth of the circuit to further mini-
mize the execution time. Using a recent method to approx-
imate ReLU, we were able to build a bootstrap-free ReLU
function in FHE. Since the max pooling layer requires boot-
strapping, we replaced it with a mean pooling layer. Overall,
we show that it is possible to implement encrypted inference
in reasonable time by investing in the right CNN design and
parameter choices.

In future, we will proceed to integrate other layers with
the end-goal of support full inferencing and training on en-
crypted data. We also observe that an overall latency of 561
seconds could be too high for some applications. The limi-
tation of the ciphertext packing strategy used in this work is
high latency for a single inference and high memory require-
ment. This could be addressed using different packing strate-
gies as discussed in (Brutzkus, Gilad-Bachrach, and Elisha



2019), which can reduce the latency while also decreasing
the throughput. Since all the ideas contained in (Brutzkus,
Gilad-Bachrach, and Elisha 2019) are practical HE imple-
mentation nuances that do not require any change to the ma-
chine learning model, they can be readily applied to the pro-
posed approach. We leave this analysis for future work.
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