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Abstract

Finding efficient, easily implementable differentially private
algorithms that offer strong excess risk bounds is an impor-
tant problem in modern machine learning. To date, most work
has focused on private empirical risk minimization (ERM) or
private population loss minimization. However, there are of-
ten other objectives–such as fairness, adversarial robustness,
or sensitivity to outliers–besides average performance that are
not captured in the classical ERM setup. To this end, we study
a completely general family of convex, Lipschitz loss func-
tions and establish the first known differentially private ex-
cess risk and runtime bounds for optimizing this broad class.
We provide similar bounds under additional assumptions of
β-smoothness and/or strong convexity.
We also address private stochastic convex optimization
(SCO). While (ε, δ)-differential privacy (δ > 0) has been
the focus of much recent work in private SCO, proving tight
excess population loss bounds and runtime bounds for (ε, 0)-
differential privacy remains a challenging open problem. We
provide the tightest known (ε, 0)-differentially private pop-
ulation loss bounds and fastest runtimes under the presence
of (or lack of) smoothness and strong convexity assumptions.
Our methods extend to the δ > 0 setting, where we offer
the unique benefit of ensuring differential privacy for arbi-
trary ε > 0 by incorporating a new form of Gaussian noise
proposed in (Zhao et al. 2019). Our results are achieved us-
ing perhaps the simplest yet practical differentially private
algorithm: output perturbation. Although this method is not
novel conceptually, our analysis shows that the power of this
method to achieve strong privacy, utility, and runtime guaran-
tees has not been fully appreciated in prior works. Finally, we
apply our theory to two learning frameworks, “tilted ERM”
and “adversarial learning”. In particular, our theory quan-
tifies tradeoffs between adversarial robustness, privacy, and
runtime.

1 Introduction
In recent years, big data has become more prolific and
widely used, while at the same time there has been a growing
desire among the public (and regulators) for guarantees that
their data remains private. Thus, an important problem in
modern machine learning is how to conceal individuals’ sen-
sitive information in a dataset while simultaneously training
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a useful model on that dataset. Differential privacy provides
a rigorous guarantee that, with high probability, an adver-
sary cannot discover an individual’s data by observing the
output of an algorithm. More precisely, a randomized algo-
rithm A : Xn → Rd is said to be (ε, δ)-differentially pri-
vate if for all measurable subsets K ⊆ range(A) and all n-
element data sets X,X ′ ∈ Xn which differ by at most one
observation (i.e. |X∆X ′| ≤ 2), we have

P(A(X) ∈ K) ≤ P(A(X ′) ∈ K)eε + δ,

where the probability is (solely) over the randomness of
A (Dwork and Roth 2014). We refer to data sets dif-
fering in only one observation (|X∆X ′| ≤ 2) as “ad-
jacent.” If δ = 0, we may say an algorithm is ε-
differentially private. An (ε, δ)-differentially private algo-
rithm is ε-differentially private with probability 1 − δ
(Dwork and Roth 2014, Lemma 3.17). Therefore, while
large values of ε can still provide some privacy, δ � 1 is
necessary for meaningful privacy guarantees. In fact, δ � 1

n
is typically desirable: otherwise, a model may leak individ-
uals’ data and still satisfy the privacy constraint (Dwork and
Roth 2014). For example, if δ > 0, then we may have
P(A(X) ∈ K) = 0, and P(A(X ′) ∈ K) = δ for some
K ⊆ range(A), adjacent datasetsX,X ′ ∈ Xn. Therefore, if
K occurs, then A completely reveals the underlying data set
X ′.While a lot of the literature has focused on efficient algo-
rithms for (ε, δ)-differentially private algorithms, the impor-
tant case of δ = 0 has been neglected. The first contribution
of this work is to fill this void.

Assume the parameters of a machine learning model are
trained via solving the minimization problem:

w̃(X) ≈ arg min
w∈Rd

F (w,X). (1)

In the case of empirical risk minimization (ERM), where
F (w,X) = 1

n

∑n
i=1 f(w, xi), algorithms for maintaining

differential privacy through observing w̃(X) is well stud-
ied (Chaudhuri et al. 2011; Bassily et al. 2014; Zhang et al.
2017; Wang et al. 2017). Here (and throughout) X =
{xi}ni=1 is a data set with observations in some set X ⊆ Rq ,
and the weights w ∈ Rd. More recently, several works
have also considered private stochastic convex optimization
(SCO), where the goal is to minimize the expected popula-
tion loss F (w,X) = Ex∼D[f(w, x)], given access to n i.i.d



samples X = {xi}ni=1 (Bassily et al. 2019; Feldman et al.
2020; Arora et al. 2020). However, the algorithms in these
works are only differentially private for δ > 0,which, as dis-
cussed earlier, provides substantially weaker privacy guaran-
tees. Therefore, providing efficient, practical algorithms for
(ε, 0)-differentially private SCO is an important gap that we
fill in the present work.

Our second main contribution is differentially private con-
vex optimization for general (non-ERM, non-SCO) loss
functions. While ERM and SCO are useful if average perfor-
mance is the goal, there are situations where another objec-
tive besides average performance is desirable. For example,
one may want to train a machine learning model that ensures
some subsets of the population are treated fairly (see e.g.
(Datta et al. 2015)), or one that is robust to corrupted data or
adversarial attacks (Goodfellow et al. 2015), or one that has
lower variance to allow for potentially better generalization.
One may also want to diminish the effect of outliers or in-
crease sensitivity to outliers. In these cases, it may be more
fruitful to consider an alternative loss function that is not of
ERM form. For example, the max-loss function

F (w,X) = max{f(w, x1), ...f(w, xn)}

provides a model that has good “worst-case” performance
and such F is clearly not of ERM form. The recently pro-
posed “tilted ERM” (TERM) framework (Li et al. 2020)
aims to address these shortcomings of standard ERM and
encompasses the max-loss mentioned above. As another ex-
ample, one may want a ML model that offers “accuracy
at the top” (AATP) for applications such as recommenda-
tion systems, since many users will only browse the first
(“top”) few suggestions that are returned (Boyd et al. 2012).
Maximizing accuracy at the top can be formulated as an
optimization problem that is not ERM form (Boyd et al.
2012). Existing differentially privacy utility and runtime re-
sults have all been derived specifically for standard ERM or
SCO and therefore would not apply to objectives such as
TERM and AATP, which do not fall into either of these two
(ERM or SCO) categories. Beyond machine learning, non-
ERM losses appear in other engineering applications, such
as power grid scheduling and sensor networks (Fioretto et al.
2019; Wang et al. 2018).

Our last main contribution is to specialize our theory and
framework to DP TERM (discussed above) and adversarial
training. In particular, for smooth strongly convex TERM,
we derive excess risk bounds that (nearly) extend the op-
timal differentially private ERM bounds of (Bassily et al.
2014), since the TERM objective encompasses ERM in the
limit. In adversarial training, the goal is to train a model that
has robust predictions to an adversary’s perturbations (with
respect to some perturbation set S) of the feature data. This
problem has gained a lot of attention in recent years, since
it was first observed that neural nets can often be fooled by
tiny, human-imperceptible perturbations into misclassifying
images (Goodfellow et al. 2015). However, the challenging
task of ensuring such adversarial training is executed in a
differentially private manner has received much less atten-
tion by researchers. Indeed, we are not aware of any prior
works that have shown how to keep the adversarial train-

ing procedure differentially private and provided adversar-
ial risk and runtime bounds. Perhaps the closest step in this
direction is the work (Phan et al. 2020), which provides a
differentially private algorithm for training a classifier that
is “certifiably robust,” in the sense that with high probabil-
ity, the classifier’s predicted label is stable under small per-
turbations. However, our measure of adversarial robustness
is different: we look at excess adversarial risk and provide
tight bounds that depend expicitly on the privacy parameters.
This allows for an interpretation of the tradeoffs between ro-
bustness, privacy, and runtime. Furthermore the algorithm of
(Phan et al. 2020), a noisy stochastic batch gradient descent,
is quite complicated to implement and does not come with
runtime bounds.

Our theory is built on the idea of output perturbation.
Conceptually, the output perturbation mechanism outputs

wA(X) := ΠB(0,R) [w̃(X) + b] ,

where w̃ is the output of some non-private algorithm and
b ∈ Rd is some suitably chosen random noise vector. Here
ΠB(0,R)(z) := arg minw∈B(0,R) ‖z − w‖2 is the projection
onto the closed euclidean ball (centered at 0) of radius R,
B(0, R) ⊂ Rd, which is large enough to contain w∗(X);
see “Notation” paragraph below for more detail. Techni-
cally, projection is necessary for our excess risk analysis
in the non-smooth case, since we require Lipschitzness at
wA(X) (recall that strongly convex function cannot be Lip-
schitz on the whole space). Output perturbation has been
studied in the differential privacy literature for many years
(Dwork et al. 2006; Chaudhuri et al. 2011; Zhang et al.
2017). In early works, which culminated in (Dwork et al.
2006), the method was introduced and proven to be differ-
entially private. In (Chaudhuri et al. 2011), high probabil-
ity excess risk and population loss bounds for linear classi-
fiers with strongly convex regularizers in the ERM and SCO
settings are given for output perturbation (Chaudhuri et al.
2011, Thm 15, Lemma 16). However, no practical imple-
mentation is provided. As a first step in the practical direc-
tion, (Zhang et al. 2017) shows how to implement output
perturbation with gradient descent in the smooth ERM set-
ting, providing excess empirical risk and runtime bounds.
Their privacy analysis is tied to the particular non-private
optimization method they use, which hinders their runtime
potential and makes their analysis less transparent.
Notation. Recall that a function h : W → R on some do-
mainW ⊆ Rd is convex if h(λw + (1− λ)w′) ≤ λh(w) +
(1 − λ)h(w′) for all λ ∈ [0, 1] and all w,w′ ∈ W. We say
h is µ-strongly convex if h(w) − µ

2 ‖w‖
2
2 is convex. Also,

h is L-Lipschitz if ‖h(w) − h(w′)‖ ≤ L‖w − w′‖2 for all
w,w′ ∈ W and β-smooth if h is differentiable and ∇h(w)
is β-Lipschitz. We always assume that F : Rd ×Xn :→ R
is such that for all X ∈ Xn, F (·, X) is convex on Rd and
L-Lipschitz on B(0, R), where

R := sup
X∈Xn

inf
w∗(X)

‖w∗(X)‖2 + 1,

and the infimum is over w∗(X) ∈ argminw∈Rd F (w,X).
We denote the family of such convex, L-Lipschitz (on
B(0, R)) functions by GL,R. Thus, if F ∈ GL,R,



then B(0, R) contains at least one global minimizer of
F (·, X) in its interior for all X ∈ Xn. The data uni-
verse X can be be any set, and we often denote X =
(x1, · · · , xn) ∈ Xn. We will also work with the fol-
lowing families of functions, which are each subsets of
GL,R, throughout: Fµ,L,R := {F : Rd × Xn →
R | F (·, X) is µ-strongly convex ∀ X};Hβ,µ,L,R := {F ∈
Fµ,L,R : F (·, X) is β-smooth ∀X}; and Jβ,L,R := {F ∈
GL,R : F (·, X) is β-smooth ∀ X ∈ Xn}. For F ∈
Hβ,µ,L,R, denote the condition number by κ = β

µ . Also,
FERMµ,L,R ,HERMβ,µ,L,R, ... are defined to be the subset of func-
tions in Fµ,L,R,Hβ,µ,L,R, ... that are of ERM form, i.e.
F (w,X) = 1

n

∑n
i=1 g(w, xi) for all w ∈ Rd, X ∈ Xn

for some convex g : Rd × X → R. Finally, define the fol-
lowing constant that is used in our choice of Gaussian noise

vector: cδ :=

√
log
(

2√
16δ+1−1

)
(Zhao et al. 2019).

2 Output Perturbation for General
Differentially Private Convex Optimization

In this section, we implement the classical output pertur-
bation algorithm and provide a tight analysis for different
classes of loss functions:

Strongly Convex Loss
Our framework when F (w,X) in (1) is strongly convex in
w is described in Algorithm 1. Note that it accepts as in-
put any non-private optimization algorithm and transforms
it into a differentially private one, by adding noise to the ap-
proximate minimizer wT . As a result, we are able to obtain
runtimes as fast as non-private optimization method.

Algorithm 1 Black Box Output Perturbation Algorithm for
Fµ,L,R andHβ,µ,L,R
Require: non-private (possibly randomized) optimization

methodM, n, d ∈ N, privacy parameters ε > 0, δ ≥ 0,
data set X ∈ Xn, function F (w,X) ∈ Fµ,L,R, ac-
curacy parameter α > 0 with corresponding iteration
number T = T (α) ∈ N (such that E[F (wT (X), X) −
F (w∗(X), X)] ≤ α).

1: Run M for T = T (α) iterations to ensure
EF (wT (X), X)− F (w∗, X) ≤ α.

2: Add noise to ensure privacy: wA := ΠB(0,R)(wT + ẑ),
where the pdf p(ẑ) of ẑ is proportional to

exp

(
− ε‖ẑ‖2

∆F+2
√

2α
µ

)
if δ = 0

exp

(
− ε2‖ẑ‖22

(∆F+2
√

2α
µ )2(cδ+

√
c2δ+ε)

2

)
if δ > 0

,

where ∆F :=

{
2L
µn if F ∈ FERMµ,L,R
2L
µ if F ∈ Fµ,L,R \ FERMµ,L,R

3: return wA.

First, let us establish the privacy guarantee for this algo-
rithm.

Proposition 2.1 Algorithm 1 is (ε, δ)-differentially private.

For F ∈ Fµ,L,R, instantiating Algorithm 1 with the sub-
gradient method (Nesterov 2014) results in the following.

Theorem 2.1 Take M to be the Subgradient Method with
step sizes ηt = 2

µ(t+1) in Algorithm 1. Let F ∈ Fµ,L,R.

a) Let δ = 0, dε ≤ 1.

Setting α = L2

µ
d
ε gives EAF (wA(X), X) −

F (w∗(X), X) ≤ 9L
2

µ
d
ε in T = 2ε

d gradient evalua-
tions and runtime 2ε.
b) Let δ > 0,

√
d(cδ+

√
c2δ+ε)

ε ≤ 1.

Setting α = L2

µ

√
d(cδ+

√
c2δ+ε)

ε gives EAF (wδA(X), X) −

F (w∗(X), X) ≤ 9L
2

µ

√
d(cδ+

√
c2δ+ε)

ε in T =
2ε√

d(cδ+
√
c2δ+ε)

≤ 2
√

ε
d gradient evaluations and run-

time 2
√
εd.

If F is additionally β-smooth (F ∈ Hβ,µ,L,R), our excess
risk bounds and runtime can be improved using Nesterov’s
Accelerated Gradient Descent (AGD) (Nesterov 2014):

Theorem 2.2 Let F ∈ Hβ,µ,L,R. TakeM to be Nesterov’s
Accelerated Gradient Descent (AGD) (Nesterov 2014) in
Algorithm 1.
a) Let δ = 0, dε ≤ 1. Then setting α = L2

µ min
{
κ
(
d
ε

)2
, 1
}

and T =
⌈√

κ log
(
βR2µ
L2 max

{
1,
(
ε
d

)2 1
κ

})⌉
gives

EAF (wA(X), X) − F (w∗(X), X) ≤ 26κL
2

µ

(
d
ε

)2
in

runtime Õ(
√
κd).

b) Let δ ∈ (0, 1
2 ),
√
d(cδ+

√
c2δ+ε)

ε ≤ 1. Then set-

ting α = L2

µ min

{
κ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, 1

}
and

T =

⌈
√
κ log

(
βR2µ
L2 max{1,

(√
d(cδ+

√
c2δ+ε)

ε

)2
1
κ}

)⌉
gives EAF (wδA(X), X) − F (w∗(X), X) ≤

13.5κL
2

µ

(√
d(cδ+

√
c2δ+ε)

ε

)2

in runtime Õ(
√
κd)

Convex Loss
Our Black Box implementation procedure for general con-
vex loss (but in the absence of strong convexity) is described
in Algorithm 2. Our first result is that this method is differ-
entially private:

Proposition 2.2 Algorithm 2 is (ε, δ)-differentially private.

Next, we establish excess risk and runtime bounds for Al-
gorithm 2 combined with the subgradient method:

Theorem 2.3 Let F ∈ GL,R. PutM to be the subgradient
method in the Black Box Algorithm 2 with α and T as
prescribed below. Then there exist choices of λ > 0
such that the following results hold: a) If δ = 0, dε ≤ 1,



Algorithm 2 Black Box Output Perturbation Algorithm
with Regularization for GL,R and Jβ,L,R
Require: Number of data points n ∈ N, dimension d ∈ N

of data, non-private (possibly randomized) optimization
methodM, privacy parameters ε > 0, δ ≥ 0, data uni-
verse X , data set X ∈ Xn, function F (w,X) ∈ GL,R,
accuracy and regularization parameters α > 0, λ > 0
with corresponding iteration number T = T (α, λ) ∈ N
(such that E[Fλ(wT (X), X)− Fλ(w∗(X), X)] ≤ α).

1: Run M on Fλ(w,X) = F (w,X) + λ
2 ‖w‖

2
2 for

T = T (α) iterations to ensure EFλ(wT (X), X) −
Fλ(w∗λ, X) ≤ α.

2: Add noise to ensure privacy:wA := ΠB(0,R) [wT + ẑλ],
where the density p(ẑλ) of ẑλ is proportional toexp{− ε‖ẑλ‖2

∆λ+2
√

2α
λ

} if δ = 0

exp{− 2ε2‖ẑλ‖22
(∆λ+2

√
2α
λ )2(cδ+

√
c2δ+ε)

2
} if δ > 0,

, where

∆λ :=

{
2(L+λR)

λn if F ∈ GERML,R
2(L+λR)

λ if F ∈ GL,R \ GERML,R

is an upper

bound on the L2 sensitivity of Fλ.
3: return wA.

then setting α = LR
(
d
ε

)3/2
, T =

⌈
12
(
ε
d

)2⌉
ensures

EAF (wA(X), X)−F (w∗(X), X) ≤ 49LR
√

d
ε in runtime

O( ε
2

d ).

b) Let δ ∈
(
0, 1

2

)
,
√
d(cδ+

√
c2δ+ε)

ε ≤ 1. Then setting

α = LR

(√
d(cδ+

√
c2δ+ε)

ε

)3/2

, T =

⌈
12 ε2

d(cδ+
√
c2δ+ε)

2

⌉
implies EAF (wδA(X), X) − F (w∗(X), X) ≤

25LR

(√
d(cδ+

√
c2δ+ε)

ε

)1/2

in runtime O(ε).

As in the strongly convex, assuming smoothness allows us
to improve our excess risk and runtime bounds:

Theorem 2.4 Let F ∈ Jβ,L,R (or J ERMβ,L,R ). TakeM to be
AGD in Algorithm 2.
a) Let δ = 0,

(
d
ε

)2 ≤ L
Rβ .

Then setting α = L4/3R2/3

β1/3 ( εd )2/3 and T =⌈√
2(βRL

ε
d )1/3 log

(
2
(
βR
L

)4/3 (
d
ε

)2/3)⌉
im-

plies EAF (wA(X), X) − F (w∗(X), X) ≤
146β1/3L2/3R4/3

(
d
ε

)2/3
in runtimeO

(
d2/3ε1/3

(
βR
L

)1/3

log

((
βR
L

)4/3 (
d
ε

)2/3))
for some choice of λ > 0.

b) Let δ ∈
(
0, 1

2

)
,

(√
d(cδ+

√
c2δ+ε)

ε

)2

≤ L
Rβ . Then

setting α = L4/3R2/3

β1/3
ε√

d(cδ+
√
c2δ+ε)

min{1, 1
β } and

T = Õ

√2

(
βR
L

ε√
d(cδ+

√
c2δ+ε)

)1/3


implies EAF (wδA(X), X) − F (w∗(X), X) ≤

27β1/3L2/3R4/3

(√
d(cδ+

√
c2δ+ε)

ε

)2/3

in runtime

Õ

(
d5/6ε1/6

(
βR
L

)1/3
)

for some choice of λ > 0.

3 DP SCO: Population Loss and Runtime
Bounds

Recent works (Bassily et al. 2014, 2019; Feldman et al.
2020) have established tight bounds on the expected pop-
ulation loss of (ε, δ)-private stochastic optimization algo-
rithms for δ > 0. However, the important case of δ = 0,
which provides the strongest privacy guarantee, has largely
been overlooked, except for (Bassily et al. 2014). We show
that our simple output perturbation algorithm results in ex-
cess population loss bounds that improve the excess popu-
lation loss bounds in (Bassily et al. 2014) and can be exe-
cuted in substantially less runtime. Our method also works
for δ > 0, where it serves as a simple, flexible, efficient al-
ternative which, unlike other algorithms, allows for arbitrary
ε > 0.

To proceed, we change some notation for further clar-
ity and introduce some new definitions. Let the data have
some (unknown) distribution x ∼ D. We are given a sample
dataset X ∼ Dn. We denote the empirical loss F̂ (w,X) :=
1
n

∑n
i=1 f(w, xi) and the population loss F (w,D) :=

Ex∼Df(w, x).Our goal is to understand perturbation frame-
work in privately minimizing the excess population loss,
defined at a point w ∈ Rd by F (w,D)−minw∈Rd(w,D) =
F (w,D) − F (w∗(D),D), where we denote the parameter
that minimizes the population loss by w∗(D). To avoid any
ambiguity, we will denote the minimizer of the empirical
loss for a given data set X by ŵ(X).

Strongly Convex, Lipschitz Loss
We begin with our results for strongly convex (and possibly
non-smooth) loss. By using stochastic subgradient descent
(SGD) to approximately minimize the empirical objective
F̂ in Algorithm 1, we can attain tight excess population loss
bounds efficiently.
Theorem 3.1 Let f(w, x) be µ-strongly convex and L-
Lipschitz in w for all x ∈ X . Run A = Algorithm 1 on
F̂ with M as the stochastic subgradient method with step
sizes ηt = 2

µ(t+1) and T, α as prescribed below.

1. Suppose δ = 0, d
εn ≤ 1. Then putting

α = L2

µn min{ 1
n ,

d
ε } and T = d2 max{n2, nεd }e implies

EX∼Dn,AF (wA(X),D)−F (w∗(D),D) ≤ L2

µ

(
5
n + 9 d

εn

)
.

The runtime of this method is O(max{dn2, εn}).
2. Suppose δ ∈ (0, 1

2 ),
√
d(cδ+

√
c2δ+ε)

εn ≤ 1.

Then putting α = L2

µn min

{
1
n ,
√
d(cδ+

√
c2δ+ε)

ε

}



and T = d2nmax
{
n, ε√

d(2cδ+
√
ε)

}
e implies

EX∼Dn,AF (wδA(X),D) − F (w∗(D),D) ≤
L2

µ

(
5
n + 6

√
d(cδ+

√
c2δ+ε)

εn

)
. The resulting runtime is

O
(

max
{
dn2, n

√
dε
})

.

The optimal non-private excess population loss for µ-
strongly convex, L-Lipschitz f is O(L

2

µn ) (Hazan and Kale
2014). So if δ = 0 and d . ε, then we match the optimal
non-private rate and in effect get “privacy for free.” Like-
wise, for δ > 0, if

√
dcδ +

√
ε . ε, we get privacy for free.

As noted earlier, neither (Bassily et al. 2019), nor (Feld-
man et al. 2020) provide excess population loss bounds for
δ = 0. The only population loss bound with δ = 0 is
O
(
L2

µ

(
d
εn

√
log(n) + 1

n

))
(Bassily et al. 2014, Theorem

F.2), obtained by exponential sampling + localization. Thus,
we outperform their bounds by a logarithmic factor. More-
over, as noted above, our runtime is O

(
max

{
n2d, εn

})
for δ = 0. By contrast, the worst-case runtime of the ex-
ponential sampling + localization method is much larger:
Õ
(
L2

µ2 d
9 n
ε2 max{1, Lµ }

)
(Bassily et al. 2014).

Smooth, Strongly Convex, Lipschitz Loss
With the smoothness assumption, we can also use Katyusha
(Allen-Zhu 2018), an accelerated stochastic method, instead
of SGD for implementation and obtain faster runtimes:

Theorem 3.2 Let f(w, x) be µ-strongly convex, L-
Lipschitz, β-smooth in w for all x ∈ X , and let X ∈ Xn.
Run A = Algorithm 1 on F̂ with M as Katyusha with
T = O

(
(n+

√
nκ) log(LRα

)
and α as prescribed below.

1. Suppose δ = 0, d
εn ≤ 1. Then putting

α = L2

µn2 min
{
κ
(
d
ε

)2
, 1
}

results in a point wA(X)

such that EX∼Dn,AF (wA(X),D) − F (w∗(D),D) ≤
L2

µ

(
5
n + 26κ

(
d
εn

)2)
in T = Õ(n +

√
nκ) stochastic gra-

dient evaluations. The resulting runtime is Õ(d(n+
√
nκ)).

2. Suppose δ ∈ (0, 1
2 ),

√
d(cδ+

√
c2δ+ε)

εn ≤ 1. Then

putting α = L2

µn2 min

{
κ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, 1

}
results

in a point wA(X) such that EX∼Dn,AF (wA(X),D) −

F (w∗(D),D) ≤ L2

µ

(
5
n + 13.5κ

(√
d(cδ+

√
c2δ+ε)

εn

)2
)

in

T = Õ(n +
√
nκ) stochastic gradient evaluations. The re-

sulting runtime is Õ(d(n+
√
nκ)).

The non-private statistically optimal population loss is
O(L

2

µn ), as for non-smooth. Hence, if δ = 0, we get “privacy

for free” whenever κ
(
d
ε

)2
. n or d . ε. For δ > 0, we get

“privacy for free” whenever κpc2δ
ε . n or

√
dcδ +

√
ε . ε.

There are no private population loss bounds we are aware of

for the smooth, strongly convex, Lipschitz class with δ = 0,
other than the one from exponential sampling + localization
mentioned above, which does not benefit additionally from
smoothness (Bassily et al. 2014). Therefore, our method pro-
vides the tightest (ε, 0)-differentially private excesss popula-
tion loss bounds that we are aware of and runs in less time
than any competing algorithm.

Convex, Lipschitz Loss
For convex loss f(w, x), applying the regularized output
perturbation Algorithm 2 with SGD yields the following ex-
cess population loss and runtime bounds:
Theorem 3.3 Let f(w, x) be µ-strongly convex and L-
Lipschitz in w for all x ∈ X . Run A = Algorithm 2 on
F̂λ withM as the stochastic subgradient method with step
sizes ηt = 2

λ(t+1) and T, α as prescribed below. There exist
choices of λ > 0 such that the following hold:

1. Suppose δ = 0, d
εn ≤ 1. Set α =

LR( d
εn )

3/2

(1+ d
ε )2

, T =

2n2 max{1, ( εd )2}. Then EX∼Dn,AF (wA(X),D) −
F (w∗(D),D) ≤ 32LR

((
d
εn

)1/2
+ 1√

n

)
in runtime

O(dn2 max{1, ( εd )2}).
2. Suppose δ ∈ (0, 1

2 ). Set α =

LR

(√
d(cδ+

√
c2δ+ε)

εn

)3/2

, T = 2n
2ε
d . Then

EX∼Dn,AF (wδA(X),D) − F (w∗(D),D) ≤

32LR

((√
d(cδ+

√
c2δ+ε)

εn

)1/2

+ 1√
n

)
in runtime O(n2ε).

The non-private optimal excess population loss for con-
vex, L-Lipschitz functions is O(LRn ) (Hazan and Kale
2014). Thus, we have “privacy for free” when d . ε, δ = 0,

or when d(cδ +
√
c2δ + ε) . ε2, δ ∈ (0, 1

2 ). For δ = 0, the
only competing excess population loss bound for this class

that we are aware of is Õ
(

(LR)2

(√
d
εn + 1√

n

))
, ob-

tained by the exponential mechanism (Bassily et al. 2014),
which is larger than our bound by a factor of LR. Its runtime
Õ(R2d6n3 max{d, εnR}), is also generally much larger
than ours.

Smooth, Convex, Lispchitz Loss
If we assume additionally that f is β-smooth, then with
Katyusha as the non-private input algorithm, our excess pop-
ulation loss and runtime bounds improve:
Theorem 3.4 Let f(w, x) be β-smooth, µ-strongly convex,
and L-Lipschitz in w for all x ∈ X . Run A = Algorithm 2
on F̂λ withM as Katyusha with α, T as prescribed below.
There exists λ > 0 such that the following hold:
1. Suppose δ = 0,

(
d
εn

)2 ≤ LR
β .

Set α = L4/3R2/3

β1/3 , and T =

O

(
n+ n5/6

(
ε
d

)1/3 (βR
L

)1/3

log

((
βR
L

)1/3 (
d
ε

)2/3
n4/3

))
.

Then



EX∼Dn,AF (wA(X),D) − F (w∗(D),D) ≤
64β1/3L2/3R4/3( 1√

n
+

(
d
εn

)2/3
) in runtime

O

(
nd+ n5/6d2/3ε1/3

(
βR
L

)1/3
)
.

2. Suppose δ ∈ (0, 1
2 ),

(√
d(cδ+

√
c2δ+ε)

εn

)2

≤ LR
β . Set

α = L4/3R2/3

β1/3 ( εn√
d(cδ+

√
c2δ+ε)

)2/3 1
n2 , and

T = Õ

(
n+ n5/6

(
ε√

d(cδ+
√
c2δ+ε)

)1/3 (
βR
L

)1/3
)
.

Then EX∼Dn,AF (wδA(X),D) − F (w∗(D),D) ≤

64β1/3L2/3R4/3

(
1√
n

+

(√
d(cδ+

√
c2δ+ε)

εn

)2/3
)

in runtime O
(
nd+ n5/6d5/6ε1/6

(
βR
L

)1/3
)
.

4 Specialization to TERM and Adversarial
Training

Differentially Private Tilted ERM (TERM)
Consider for τ > 0 the Tilted ERM (TERM) objective

Fτ (w,X) :=
1

τ
log

(
1

n

n∑
i=1

eτf(w,xi)

)
(see e.g. (Kort and Bertsekas 1972; Pee and Royset 2011;
Cohen and Shashua 2014; Cohen et al. 2016; Katharopoulos
and Fleuret 2017; Li et al. 2020) and the references therein
for the applications of this loss). It is easy to show that as
τ −→ 0, Fτ (w, x) −→ 1

n

∑n
i=1 f(w, xi), so this extends the

classical ERM framework in the limit. It also encompasses
the max loss (Fmax(w,X) = max{f(w, x1), ..., f(w, xn})
for instance, by letting τ −→ ∞. More generally, a benefit
of the TERM framework is that it allows for a continuum of
solutions between average and max loss, which, for exam-
ple, can be calibrated to promote a desired level of fairness
in the the machine learning model (Li et al. 2020). Another
interpretation of TERM is that as τ increases, the variance
of the model decreases, while the bias increases. Thus, τ can
also be tuned to improve the generalization of the model via
the bias/variance tradeoff. In what follows, we specialize our
developed theory to the TERM objective function.

Strongly convex, Lipschitz, twice differentiable f(·, x)
Next we show that if f is “nice enough,” then Fτ ∈ Fµ,L,R,
so that the excess risk bounds proved earlier hold; we will
also refine these results to show how excess risk depends on
the parameter τ > 0.

Lemma 4.1 ((Li et al. 2020, Lemmas 1 and 3)) As-
sume f(·, x) is a µ-strongly convex, twice differentiable,
L-Lipschitz (on B(0, R)) loss function for all x ∈ X .
Then Fτ (·, X) is µ-strongly convex, twice differentiable, L-
Lipschitz (on B(0, R)) for all X ∈ Xn.

By Lemma 4.1, if we put the subgradient method as
M in Algorithm 1, then we get EAF (wA(X), X) −
F (w∗(X), X) ≤ 9L

2

µ
d
ε in runtime O(nε) for δ = 0 by

invoking Theorem 2.1, with α = L2

µ
d
ε , T = ε

d . Similarly,
for δ > 0, we get EAF (wδA(X), X) − F (w∗(X), X) ≤

9L
2

µ

√
d(cδ+

√
c2δ+ε)

ε in runtime O(n
√
εd). These results hold

even as τ →∞. If, in addition, f is bounded on B(0, R)×
X , then we get the following more refined excess risk
bounds.
Proposition 4.1 Let τ > 0. Suppose f(·, x) is L-Lipschitz
on B(0, R) (where ‖w∗(X)‖ ≤ R), twice differentiable,
and µ-strongly convex for all x ∈ X . Moreover, as-
sume aR ≤ f(w, x) ≤ AR for all w ∈ B(0, R)
and all x ∈ X . Denote Cτ = eτ(AR−ar). Then run-
ning Algorithm 1 on Fτ with M as the subgradient
method yields EAFτ (wA(X), X) − Fτ (w∗(X), X) ≤
9L

2Cτ
µ

d
εn in runtime O

(
n2d
Cτ

max
{
n, ε

Cτd

})
for δ =

0. For δ ∈ (0, 1
2 ), we get EAFτ (wδA(X), X) −

Fτ (w∗(X), X) ≤ 9L
2Cτ
µ

√
d(cδ+

√
c2δ+ε)

εn in runtime

O

(
nd
Cτ

max

{
n2

Cτ
, εn√

d(cδ+
√
c2δ+ε)

})
.

Note that the boundedness condition is not very restric-
tive; indeed, it is automatic if X is compact (e.g. if data is
normalized) and f is continuous, by the extreme value theo-
rem.

Smooth, strongly convex, Lipschitz f(·, x) If we as-
sume additionally that f(·, X) is β-smooth, then the below
Lemma implies that Fτ ∈ Hβ,µ,L,R :

Lemma 4.2 Assume f(·, xi) is β-smooth and L-Lipschitz
for all i ∈ [n]. Then for any τ > 0, the TERM objective
Fτ (·, X) is βτ -smooth for X = (x1, · · · , xn), where βτ :=
β + L2τ.

Then denoting κτ = β+L2τ
µ and appealing to Theo-

rem 2.2 gives

EAFτ (wA(X), X)− Fτ (w∗(X), X) ≤ 4κτ
L2

µ

(
d

ε

)2

,

if δ = 0. For δ > 0, we have EAFτ (wδA(X), X) −

Fτ (w∗(X), X) ≤ 4κτ
L2

µ

(√
d(cδ+

√
c2δ+ε)

ε

)2

.

In both cases, the runtime is Õ(nd
√
κτ ), where κτ =

β+L2τ
µ . These bounds also hold as τ →∞.
If we assume again that f is also bounded onB(0, R)×X ,

then we can obtain the following more refined bounds:
Proposition 4.2 Assume f(·, xi) is L-Lipschitz onB(0, R),
β-smooth, twice differentiable, and µ-strongly convex. As-
sume further that aR ≤ f(w, x) ≤ AR for all w ∈
B(0, R) and all x ∈ X . Denote Cτ = eτ(AR−ar).
Then running Algorithm 1 with M as AGD yields
EAFτ (wA(X), X) − Fτ (w∗(X), X) ≤ 26κτ

L2Cτ
µ

(
d
εn

)2
if δ = 0, and EAFτ (wδA(X), X) − Fτ (w∗(X), X) ≤

13.5κτ
L2Cτ
µ

(√
d(cδ+

√
c2δ+ε)

εn

)2

if δ ∈ (0, 1
2 ). Both of these

bounds are realized in runtime Õ(nd
√
κτ ).



Note that we nearly (up to a factor of κ) recover the op-
timal ERM excess risk bounds of (Bassily et al. 2014) as
τ → 0.

Differentially Private Adversarial Training
In recent years, adversarial attacks on neural networks have
raised significant concerns on reliability of these methods in
critical applications. Adversarial attacks are input examples
to a machine learning model crafted by making small per-
turbations to legitimate inputs to mislead the network. These
adversarial examples lead to highly confident, but incorrect
outputs; see e.g. (Szegedy et al. 2014; Goodfellow et al.
2015; Papernot et al. 2016; Eykholt et al. 2018; Moosavi-
Dezfooli et al. 2016) and the references therein. A natural
approach to training a model that is robust to such adver-
sarial attacks is to solve the following adversarial training
problem (Madry et al. 2018; Zhang et al. 2019; Nouiehed
et al. 2019):

min
w∈Rd

max
v∈Sn

F (w,X + v,y). (2)

Here X = (x1, · · · , xn) ∈ Xn contains the feature data,
y ∈ Yn is the corresponding label/target vector (e.g. yi ∈
{0, 1} for a binary classification task), and S is a set of per-
missible adversarial perturbations. As discussed in the In-
troduction, solving Eq. (2) with a practical differentially pri-
vate algorithm to ensure privacy, robustness, and computa-
tional speed simultaneously is an important open problem.
Indeed, we are not aware of any works that provide privacy,
robustness (“excess adversarial risk”), and runtime guaran-
tees for solving Eq. (2). In this section, we illustrate how
our methods and results developed so far can be easily ap-
plied to establish excess adversarial risk bounds (robustness
guarantees) and runtime bounds via output perturbation.

Notation and preliminaries Let D = (X,y) =
((x1, y1), · · · , (xn, yn)) ∈ (X × Y)

n be a given training
data set. Assume that the adversarial perturbation set S is
convex and compact with L2 diameter ρ and that the ad-
versary chooses v = (v1, · · · , vn) ∈ Sn corresponding to
the training examples ((x1, y1), · · · , (xn, yn)). The follow-
ing definition is for notational convenience:
Definition 1 For a loss function F : Rd × (X + S)n ×Yn,
and dataset D = (X,y) ∈ (X × Y)n, denote the function
of the weights and perturbations corresponding to F by

HD : Rd × Sn → R, HD(w,v) := F (w,X + v,y).

We make the following additional assumptions:
Assumption 1 HD(·,v) ∈ Fµ,L,R for all v ∈ Sn and all
D ∈ (X × Y)

n
.

Assumption 2 HD(w, ·) is continuous and concave for all
w ∈ B(0, R) and all D ∈ (X × Y)

n
.

Note that Assumption 2 is a standard assumption in the min-
max literature (Nouiehed et al. 2019; Lin et al. 2020). To-
gether with Assumption 1, it ensures the existence of a sad-
dle point (see definition below) and enables us to (approxi-
mately) find the saddle point and implement our output per-
turbation method efficiently. Next, we recall a basic notion
from min-max optimization:

Definition 2 For α ≥ 0, say a point (ŵ, v̂) ∈ Rd × Sn is
an α-saddle point of a convex (inw)-concave (in v) function
H(w,v) if

max
v∈Sn

H(ŵ,v)− min
w∈Rd

H(w, v̂) ≤ α.

Observe that by Assumption 1, Assumption 2, and con-
vexity and compactness of B(0, R) and S, there exists at
least one α-saddle point point (ŵ, v̂) ∈ B(0, R) × Sn of
HD for any α ≥ 0. Also, if we denote

GD(w) := max
v∈Sn

HD(w,v) = max
v∈Sn

F (w,X + v,y),

which is in Fµ,L,R (by Assumption 1 and compactness of
Sn), and

w∗(D) := argmin
w∈Rd

GD(w) = argmin
w∈Rd

max
v∈S

HD(w,v) ∈ B(0, R),

then for any α-saddle point (ŵ, v̂) of HD, we have:

GD(ŵ)−GD(w∗(D)) ≤ α,
by Sion’s minimax theorem (Sion 1958).

For a model wA trained on loss function F (by some ran-
domized algorithm A), the measure of adversarial robust-
ness that we will consider is:
Definition 3 Let wA be the output of a randomized algo-
rithm A for solving Eq. (2). Define the excess adversarial
risk of A by

EA max
v∈Sn

F (wA, X + v, y)− min
w∈Rd

max
v∈Sn

F (w,X + v,y)

= EAGD(wA)−GD(w∗(D)).

In what follows, we aim to quantify the tradeoffs between
excess adversarial risk, privacy, and runtime for output per-
turbation. In order to practically implement the output per-
turbation mechanism, we make the following additional as-
sumption:
Assumption 3 HD(w, ·) is βv-smooth as a function of v ∈
Sn for all w ∈ B(0, R) and all D = (X,y) ∈ (X × Y)n.

Then Eq. (2) is a smooth (in w and v), strongly convex-
concave min-max problem and there are efficient non-
private algorithms for solving such problems (Nesterov and
Scrimali 2007; Alkousa et al. 2020; Lin et al. 2020). In Al-
gorithm 3, we give a Black Box Algorithm tailored to the
special min-max structure of the F that is present in the ad-
versarial training setting. We then instantiate the Algorithm
with the near-optimal (in terms of gradient complexity) al-
gorithms of (Lin et al. 2020) and provide upper bounds on
the runtime for privately optimizing the adversarially robust
model.

Definition 4 For α ≥ 0, a point (ŵ, v̂) ∈ B(0, R) × Bγ is
an α-saddle point of function F (w,X + v, y) if

max
v∈Bγ

F (ŵ,X + v, y)− min
w∈B(0,R)

F (w,X + v̂, y) ≤ α.

The same arguments used before show that the Algo-
rithm 3 is (ε, δ)-differentially private. Furthermore, instan-
tiating Algorithm 3 with the Minimax-AIPP algorithm (Lin
et al. 2020) leads to the following guarantees:



Algorithm 3 Black Box Output Perturbation Algorithm for
Implementing DP Adversarial Training

Require: Number of data points n ∈ N, dimension d ∈ N
of feature data, non-private (possibly randomized) opti-
mization methodM, privacy parameters ε > 0, δ ≥ 0,
feature data universe X ⊆ Rd and label universe Y,
data set D = (X,y) ∈ (X × Y)n, convex compact
perturbation set S ⊂ Rd of diameter ρ ≥ 0, loss func-
tion F (w,X,y) that is L-Lipschitz and µ-strongly con-
vex in w on B(0, R) and concave in v ∈ Sn, accuracy
parameter α > 0 with corresponding iteration number
T = T (α) ∈ N such that (wT , vT ) is an α-saddle point
of HD(w,v).

1: RunM for T = T (α) iterations to obtain an α-saddle
point (wT , vT ) of HD(w,v) = F (w,X + v,y).

2: Add noise to ensure differential privacy:
wA(D) := ΠB(0,R)(wT + ẑ), where
the density of ẑ is given as: pẑ(t) ∝

exp

(
− ε‖t‖2

∆+2
√

2α
µ

)
if δ = 0

exp

(
− ε2‖t‖22

(∆+ 2α
µ )

2
(
cδ+
√
c2δ+ε

)2

)
if δ ∈

(
0, 1

2

)
,

and ∆ :=

{
2L
µ if F is not of ERM form
2L
µn if F is of ERM form.

3: return wA(D).

Theorem 4.1 Let D = (X,y) ∈ (X × Y)n be a dataset
and let ε > 0, δ ∈ [0, 1

2 ). Assume that S is a convex compact
set in Rd of L2 diameter ρ and that the loss function F is
such that Assumption 1, Assumption 2, and Assumption 3
hold (see Definition 1). Furthermore, assume that HD(·, v)
is β-smooth for all v ∈ Sn with condition number κ = β/µ.
Run Algorithm 3 withM = Minimax-AIPP.
1. Suppose F is not of ERM form.
a) Let δ = 0 and d

ε ≤ 1. Setting α = L2

µ min{κ
(
d
ε

)2
, 1}

yields EAGD(wA) − minw∈Rd GD(w) ≤ 26κL
2

µ

(
d
ε

)2
in

T = Õ

(√
ββv

L2 min
{
κ( dε )

2
,1
}√nρ

)
gradient evaluations

and runtime Õ

(
nd
√

ββv

L2 min
{
κ( dε )

2
,1
}√nρ

)
.

b) Let δ ∈
(
0, 1

2

)
and

√
d(cδ+

√
c2δ+ε)

ε . 1. Setting α =

L2

µ min

{
κ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, 1

}
gives EAGD(wδA) −

minw∈Rd GD(w) ≤ 13.5κL
2

µ

(√
d(cδ+

√
c2δ+ε)

ε

)2

in T = Õ

√√√√ ββv

L2 min

κ
(√

d(cδ+
√
c2
δ
+ε)

ε

)2

,1


√
nρ

 gradi-

ent evaluations

and runtime Õ

nd√√√√ ββv

L2 min

κ
(√

d(cδ+
√
c2
δ
+ε)

ε

)2

,1


√
nρ

 .

2. Suppose F is of ERM form.
a) Let δ = 0 and d

εn ≤ 1. Setting α =
L2

µ
1
n2 min{κ

(
d
ε

)2
, 1} yields

EAGD(wA) − minw∈Rd GD(w) ≤ 26κL
2

µ

(
d
εn

)2
in

T = Õ

(
n3/2

√
ββv

L2 min
{
κ( dε )

2
,1
}ρ
)

gradient evaluations

and runtime Õ

(
n5/2d

√
ββv

L2 min
{
κ( dε )

2
,1
}ρ
)

.

b) Let δ ∈
(
0, 1

2

)
and

√
d(cδ+

√
c2δ+ε)

εn ≤ 1. Set-

ting α = L2

µ
1
n2 min

{
κ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, 1

}
gives EAGD(wδA) − minw∈Rd GD(w) ≤

13.5κL
2

µ

(√
d(cδ+

√
c2δ+ε)

εn

)2

in

T = Õ

n3/2
√√√√ ββv

L2 min

κ
(√

d(cδ+
√
c2
δ
+ε)

ε

)2

,1


ρ

 gradient

evaluations and runtime

Õ

n5/2d
√√√√ ββv

L2 min

κ
(√

d(cδ+
√
c2
δ
+ε)

ε

)2

,1


ρ

 .

If, in addition, HD(w, ·) is µv-strongly concave in v for
all w ∈ B(0, R), then the above bounds are all attained and
the gradient complexity improves to T = Õ

(√
κκv

)
and

runtime improves to Õ
(
nd
√
κκv

)
.

Note also that a similar result for F ∈ Fµ,L,R can easily
be written down as a consequence of our earlier results. Ex-
cess adversarial population loss bounds can also be derived
from our DP-SCO results.

5 Conclusion
In this work, we highlighted the importance of differentially
private optimization for general non-ERM loss functions,
and provided a simple yet practical algorithm for address-
ing this problem, along with excess risk and runtime bounds.
We also used our method to obtain tight population loss and
runtime bounds for the differentially private SCO problem,
where, unlike prior works, we guarantee (ε, δ)-DP for all
δ ≥ 0. Finally, we applied our results to two practical ap-
plications in machine learning: DP Tilted ERM and DP Ad-
versarial Training. An interesting question for future work
is whether our excess risk bounds for general non-ERM loss
are tight. Currently, the only known DP excess risk lower



bounds are for ERM functions (Bassily et al. 2014).
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Proofs of Section 2 Results
We will require a definition and a lemma for several proofs.

Definition 1 Define the L2 sensitivity of a (strongly convex
in w) function F : Rd ×Xn → R as

∆F := sup
X,X′∈Xn,|X∆X′|≤2

‖w∗(X)− w∗(X ′)‖2,

where w∗(X) = arg minw∈Rd F (w,X).

The following result generalizes Corollary 8 in (Chaud-
huri et al. 2011) (beyond smooth linear ERM classifiers with
bounded label space).

Lemma 0.1 For any F ∈ Fµ,L,R, ∆F ≤ 2L
µ . For F ∈

FERMµ,L ,∆F ≤ 2L
µn .

The proof relies on the following generalization (to non-
differentiable functions on a possibly constrained (W 6= Rd)
domain) of Lemma 7 from (Chaudhuri et al. 2011).

Lemma 0.2 Let G(w), g(w) be continuous convex func-
tions on some convex closed setW ⊆ Rp and suppose that
G(w) and G(w) + g(w) are µ-strongly convex. Assume
further that g is Lg-Lipschitz.
Define w1 = arg minw∈W G(w) and w2 =

arg minw∈W [G(w) + g(w)]. Then ‖w1 − w2‖2 ≤ Lg
µ .

Proof: At a point w ∈ W, let h(w) and H(w) denote sub-
gradients of g and G, respectively. By first-order optimality
conditions, for all w ∈ W , we have

〈H(w1), (w − w1)〉 ≥ 0

and

〈H(w2), (w − w2)〉+ 〈h(w2), (w − w2)〉 ≥ 0.

Plugging w2 for w in the first inequality and w1 for w in the
second inequality, and then subtracting gives:

〈H(w1)−H(w2), w1 − w2〉 ≤ 〈h(w2), w1 − w2〉. (1)

Now, by strong convexity of G, we have

µ‖w1 − w2‖22 ≤ 〈H(w1)−H(w2), w1 − w2〉.

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Combining this with Eq. (1) and using Cauchy-Schwartz
yields:

µ‖w1 − w2‖22 ≤ 〈H(w1)−H(w2), w1 − w2

≤ 〈h(w2), w1 − w2〉 ≤ ‖h(w2)‖2‖w1 − w2‖2.
Finally, using Lg-Lipschitzness of g and dividing the above
inequality by µ‖w1 − w2‖2 gives the Lemma.

Now we can prove Lemma 0.1: Let X,X ′ ∈ Xn such
that (WLOG) xn 6= x′n, but all other data points are the
same. Apply Lemma 0.2 to G(w) = F (w,X), g(w) =
F (w,X ′)−F (w,X) and note that g is 2L-Lipschitz by the
triangle inequality. For F of ERM form, we have g(w) =
1
n [f(w, x′n)− f(w, xn)], which is 2Ln -Lipschitz. This com-
pletes the proof.

Proof of Proposition 2.1
Define ∆T := sup|X∆X′|≤2 ‖wT (X) − wT (X ′)‖2. First,

we show that ∆T ≤ ∆F + 2
√

2α
µ . Now, note that since

F (wT (X), X)−F (w∗, X) ≤ α by the choice of T = T (α),
and since F (·, X) is µ-strongly convex, we have

‖wT − w∗‖22 ≤
2

µ
[F (wT , X)− F (w∗, X)−

〈∇F (w∗, X), wT − w∗〉] ≤
2

µ
α.

Hence for any data setsX,X ′ ∈ Xn such that |X∆X ′| ≤ 2,
we have

‖wT (X)− wT (X ′)‖ ≤ ‖wT (X)− w∗(X)‖
+ ‖w∗(X)− w∗(X ′)‖
+ ‖w∗(X ′)− wT (X ′)‖

≤
√

2

µ
α+ ∆F +

√
2

µ
α.

Now recall the well-known post-processing property of
differential privacy, which states that any function (e.g. pro-
jecting onto W) of an (ε, δ)- differentially private method
is itself (ε, δ)- differentially private (Dwork and Roth
2014). By this fact, it suffices to show that the algorithm
wA′(X) := wT (X) + ẑ (without projection) is differen-
tially private. Assume first δ = 0. Then by the defini-
tion of differential privacy, it suffices to show that for any



s ∈ range(wA′) (for which p′(s) 6= 0) and any X,X ′ ∈ Xn
such that |X∆X ′| ≤ 2,

p(s)

p′(s)
≤ eε,

where p and p′ are the probability density functions (pdfs)
of A′(X) and A′(X ′) respectively. Now note that p(s) =
pz(s − wT (X)) and p′(s) = pz(s − wT (X ′)), where pz is
the pdf of the noise. Then

p(s)

p′(s)
=

pz(s− wT (X))

pz(s− wT (X ′))

= exp

(
−ε‖s− wT (X)‖2 + ε‖s− wT (X ′)‖2

∆T

)
≤ exp

(
ε‖wT (X)− wT (X ′)‖2

∆T

)
≤ exp(ε),

where the second to last line uses the reverse trian-
gle inequality and the last line uses the definition of
∆T . Now, by the post-processing property (Dwork
and Roth 2014), we conclude that the algorithm
A(X) = wA(X) = ΠW(A′(X)) is (ε, 0)- differen-
tially private.

For δ > 0, the proof follows similarly, using the following
result of (Zhao et al. 2019):
Theorem 0.1 (Theorem 5 in (Zhao et al. 2019)) For δ ∈
(0, .5), (ε, δ)- differentially privacy can be achieved by
adding Gaussian noise with mean 0 and standard deviation
σ = (c+

√
c2+ε)∆

ε
√

2
to each dimension of a query with L2 sen-

sitivity ∆. Here c =

√
log
(

2√
16δ+1−1

)
.

Here, our “query” is wT (X), which has sensitivity ∆T ,
and hence A′ (as defined above) is (ε, δ). Applying the
post-processing property again shows that A is (ε, δ)-
differentially private.

Proof of Theorem 2.1
The result is a corollary of (the first part of) the following:
Theorem 0.2 Run Algorithm 1 with arbitrary inputs.

1. Suppose F ∈ Fµ,L,R.
a) Let δ = 0, dε ≤ 1.
Then EAF (wA(X), X) − F (w∗(X), X) ≤
2
√

2
(
L2

µ + L
√

2α
µ

) (
d
ε

)
+ α.

In particular, setting α = L2

µ
d
ε gives EAF (wA(X), X)−

F (w∗(X), X) ≤ 9L
2

µ

(
d
ε

)
.

b) Let δ > 0,
√
d(cδ+

√
c2δ+ε)

ε ≤ 1.

Then EAF (wδA(X), X) − F (w∗(X), X) ≤

2
(
L2

µ + L
√

2α
µ

)(√
d(cδ+

√
c2δ+ε)

ε

)
+ α.

In particular, setting α = L2

µ

(√
d(cδ+

√
c2δ+ε)

ε

)
gives

EAF (wδA(X), X) − F (w∗(X), X) ≤

6L
2

µ

(√
d(cδ+

√
c2δ+ε)

ε

)
.

2. Suppose F ∈ FERMµ,L .
a) Let δ = 0, d

εn ≤ 1. Then EAF (wA(X), X) −
F (w∗(X), X) ≤ 2

√
2
(
L2

µ

(
1
n

)
+ L

√
2α
µ

) (
d
ε

)
+ α.

In particular, setting α = L2

µn min{ 1
n ,

d
ε } gives

EAF (wA(X), X)− F (w∗(X), X) ≤ 9L
2

µ

(
d
εn

)
.

b) Let δ > 0,
√
d(cδ+

√
c2δ+ε)

εn ≤ 1.
Then EAF (wA(X), X) − F (w∗(X), X) ≤

2
(
L2

µn + L
√

2α
µ

)(√
d(cδ+

√
c2δ+ε)

ε

)
+ α.

In particular, setting α = L2

µn min

{
1
n ,
√
d(cδ+

√
c2δ+ε)

ε

}
gives
EAF (wδA(X), X) − F (w∗(X), X) ≤

6L
2

µ

(√
d(cδ+

√
c2δ+ε)

εn

)
.

To prove this, we will need to recall the following basic fact
about projections onto closed, convex sets:
Lemma 0.3 Let W be a closed, convex set in Rd, and let
a ∈ Rd. Then π = ΠW(a) if and only if 〈a− π,w− π〉 ≤ 0
for all w ∈ W.

We include the proof for completeness: Fix any a ∈
Rd. By definition, ΠW(a) = arg minw∈W

1
2‖w − a‖

2
2 :=

arg minw∈W h(w). Then∇h(w) = w−a and by first-order
optimality conditions, π = arg minw∈W h(w) if and only if
for all w ∈ W,

〈∇h(π), w−π〉 ≥ 0⇔ 〈π−a,w−π〉 ≥ 0⇔ 〈a−π,w−π〉 ≤ 0.

Now we can prove the Theorem: Notice

EAF (wA(X), X)− F (w∗(X), X) =

EF (ΠW(wT (X) + ẑ), X)− F (w∗(X), X)

= E[ΠW(wT (X) + ẑ), X)− F (wT (X), X)]

+ E[F (wT (X), X)− F (w∗(X), X)]

≤ LE‖ẑ‖2 + α,

where we used Lemma 0.3 in the last inequality. Now for
δ = 0, EAF (wA(X), X) − F (w∗(X), X) ≤

√
2L(∆F +

2
√

2α
µ )
(
d
ε

)
+ α. Then using Lemma 0.1 to bound ∆F

proves the first statement in each of 1a) and 2a). Similarly,
for δ > 0, we have

EAF (wδA(X), X)− F (w∗(X), X) ≤

L

(
∆F + 2

√
2α

µ

)(√
d(cδ +

√
c2δ + ε)

ε

)
+ α.

Appealing again to Lemma 0.1 completes the proof. The
verification that the prescribed choices of α achieve the re-
spective fundamental upper bounds is routine, using the as-
sumptions stated in the theorem.

Next, we recall the following convergence guarantee for
strongly convex, Lipschitz objective:



Proposition 0.1 (Aravkin et al. 2017, Proposition 5.3) For
F ∈ Fµ,L,R, running the subgradient method for T = 2L2

µα

iterations and step sizes ηt = 2
µ(t+1) results in a point ŵT ∈

W such that F (ŵT , X) − F (w∗(X), X) ≤ α. Here ŵT =
argminwt,t∈[T ] F (wt, X).

Then Theorem 2.1 is a direct consequence of Proposi-
tion 0.1 and Theorem 0.2.

Proof of Theorem 2.2

We begin by proving an analogue of Theorem 0.2 for β-
smooth loss functions.

Theorem 0.3 Run Algorithm 1 on F ∈ Hβ,µ,L,R with arbi-
trary inputs.

1. Suppose F ∈ Hβ,µ,L,R.
a) Let δ = 0, d

ε ≤ 1. Then EAF (wA(X), X) −

F (w∗(X), X) ≤ 4β
(
L
µ +

√
2α
µ

)2 (
d
ε

)2
+ α.

In particular, setting α = L2

µ min
{
κ
(
d
ε

)2
, 1
}

gives

EAF (wA(X), X)− F (w∗(X), X) ≤ 26κL
2

µ

(
d
ε

)2
.

b) Let δ ∈ (0, 1
2 ),

√
d(cδ+

√
c2δ+ε)

ε ≤ 1.
Then EAF (wδA(X), X) − F (w∗(X), X) ≤

2β
(
L
µ +

√
2α
µ

)2
(√

d(cδ+
√
c2δ+ε)

ε

)2

+ α.

In particular, setting α =

L2

µ min

{
κ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, 1

}
gives

EAF (wδA(X), X) − F (w∗(X), X) ≤

13.5κL
2

µ

(√
d(cδ+

√
c2δ+ε)

ε

)2

.

2. Suppose F ∈ HERMβ,µ,L,R.

a) Let δ = 0, d
εn ≤ 1. Then EAF (wA(X), X) −

F (w∗(X), X) ≤ 4β
(
L
µn +

√
2α
µ

)2 (
d
ε

)2
+ α.

In particular, setting α = L2

µn2 min
{
κ
(
d
ε

)2
, 1
}

gives

EAF (wA(X), X)− F (w∗(X), X) ≤ 26L
2

µ κ
(
d
εn

)2
.

b) Let δ ∈ (0, 1
2 ),

√
d(cδ+

√
c2δ+ε)

εn ≤ 1.
Then EAF (wδA(X), X) − F (w∗(X), X) ≤

2β
(
L
µn +

√
2α
µ

)2
(√

d(cδ+
√
c2δ+ε)

ε

)2

+ α.

In particular, setting α =

L2

µn2 min

{
κ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, 1

}
gives

EAF (wδA(X), X) − F (w∗(X), X) ≤

13.5L
2

µ κ

(√
d(cδ+

√
c2δ+ε)

εn

)2

.

To prove Theorem 0.3, write

EAF (wA(X), X)− F (w∗(X), X) =

EF (ΠW(wT (X) + ẑ), X)− F (w∗(X), X)

= EF (ΠW(wT (X) + ẑ), X)− F (wT (X), X)

+ F (wT (X), X)− F (w∗(X), X)

≤ β

2
E‖ẑ‖22 + α,

where in the last line we used the descent lemma and
Lemma 0.3. Now for δ = 0,

EAF (wA(X), X)− F (w∗(X), X) ≤

β

(
∆F + 2

√
2α

µ

)2(
d

ε

)2

+ α.

Substituting the bounds on ∆F from Lemma 0.1 proves the
first statement in each of 1a) and 2a). Similarly, for δ > 0,

EAF (wA(X), X)− F (w∗(X), X) ≤

β

2

d(cδ +
√
c2δ + ε)2

(
∆F + 2

√
2α
µ

)2

ε2

+ α.

Again appealing to Lemma 0.1 establishes the first state-
ments in 1b) and 2b). Verification that the prescribed choices
of α achieve the claimed bounds is straightforward, complet-
ing the proof of Theorem 0.3.

Recall that running T =
√
κ log

(
(µ+β)R2

2α

)
= Õ(

√
κ) it-

erations (each iteration involves a full gradient evaluation of
F ) of Nesterov’s AGD is sufficient for finding ŵT (X) such
that F (ŵT (X), X) − F (w∗(X), X) ≤ α (Bubeck 2015).
Combining this with Theorem 0.3 yields Theorem 2.2.

Proof of Proposition 2.2
By standard arguments, it suffices to show that
sup|X∆X′|≤2 ‖wT (X) − wT (X ′)‖2 ≤ ∆λ + 2

√
2α
µ .

Let |X∆X ′| ≤ 2. Then

‖wT (X)− wT (X ′)‖2 ≤ ‖wT (X)− w∗λ(X)‖+
‖w∗λ(X)− w∗λ(X ′)‖+
‖w∗λ(X ′)− wT (X ′)‖

≤
√

2α

λ
+ ∆λ +

√
2α

λ
.

The last line follows because: λ-strong convexity of Fλ im-
plies the middle term is bounded according to Lemma 0.1
and the other two terms are both bounded by a similar argu-
ment as in the proof of Proposition 2.1, again using λ-strong
convexity of Fλ.

Proof of Theorem 2.3
As before, we first prove a general result for our black box
Algorithm 2, whence Theorem 2.3 will follow as a corollary.



Theorem 0.4 Run Algorithm 2 with λ > 0 chosen as
follows: If δ = 0, set

λ :=


L

R
√

1+ εn
d

if ∈ GERML,R

L

R
√

1+ ε
d

if ∈ GL,R \ GERML,R .

If δ ∈
(
0, 1

2

)
, set λ :=

L

R
√

1+ εn

d1/2(cδ+
√
c2
δ
+ε)

if ∈ GERML,R

L

R
√

1+ ε

d1/2(cδ+
√
c2
δ
+ε)

if ∈ GL,R \ GERML,R .

1. Suppose F ∈ GL,R.
a) Let δ = 0, dε ≤ 1. Then EAF (wA(X), X) −
F (w∗(X), X) ≤ 16.5LR

√
d
ε + 32

√
α
√
LR( εd )1/4.

In particular, setting α = LR
(
d
ε

)3/2
implies

EAF (wA(X), X)− F (w∗(X), X) ≤ 49LR
√

d
ε .

b) Let δ ∈ (0, 1/2),
√
d(cδ+

√
c2δ+ε)

ε ≤ 1.
Then EAF (wδA(X), X) − F (w∗(X), X) ≤

13LR

(√
d(cδ+

√
c2δ+ε)

ε

)1/2

+

12
√
α
√
LR( ε√

d(cδ+
√
c2δ+ε)

)1/4. In particular, setting

α = LR

(√
d(cδ+

√
c2δ+ε)

ε

)3/2

implies EAF (wδA(X), X)−

F (w∗(X), X) ≤ 25LR

(√
d(cδ+

√
c2δ+ε)

ε

)1/2

.

2. Suppose F ∈ GERML,R .
a) Let δ = 0, dεn ≤ 1.
Then EAF (wA(X), X) − F (w∗(X), X) ≤
16.5LR

√
d
εn + 16

√
α
√
LR( εnd )1/4(1 + d

ε ). In

particular, setting α =
LR( d

εn )
3/2

(1+ d
ε )2

implies

EAF (wA(X), X)− F (w∗(X), X) ≤ 33LR
√

d
εn .

b) Let δ ∈ (0, 1
2 ),
√
d(cδ+

√
c2δ+ε)

εn ≤ 1.
Then EAF (wδA(X), X) − F (w∗(X), X) ≤

13LR

(√
d(cδ+

√
c2δ+ε)

εn

)1/2

+

12
√
α
√
LR( εn√

d(cδ+
√
c2δ+ε)

)1/4. In particular, setting

α = LR

(√
d(cδ+

√
c2δ+ε)

εn

)3/2

implies EAF (wδA(X), X)−

F (w∗(X), X) ≤ 25LR

(√
d(cδ+

√
c2δ+ε)

εn

)1/2

.

To prove Theorem 0.4, decompose excess risk into 3 terms:

EAF (wA(X), X)− F (w∗(X), X) =

EA[F (wT (X) + zλ, X)− Fλ(wT (X) + zλ, X)]︸ ︷︷ ︸
a©

+ EAFλ(wT (X) + zλ, X)− Fλ(w∗λ(X), X)︸ ︷︷ ︸
b©

+ Fλ(w∗λ(X), X)− F (w∗(X), X)︸ ︷︷ ︸
c©

.

Now bound the terms as follows: a© =
−λ2E‖wA,λ(X)‖22 ≤ 0; b© ≤ (L + λR)E‖wT (X) −
w∗λ(X) + zλ‖ ≤ (L + λR)[

√
2α
λ + E‖zλ‖2]; and c© =

[Fλ(w∗λ(X), X) − Fλ(w∗(X), X)] + [Fλ(w∗(X), X) −
F (w∗(X), X)] < 0 + λ

2 ‖w
∗(X)‖22 ≤ λR2

2 since w∗λ(X)
is the unique minimizer of Fλ(·, X) by strong con-
vexity. Hence EAF (wA(X), X) − F (w∗(X), X) ≤
(L+ λR)

[√
2α
λ + E‖zλ‖2

]
+ λR2

2 .

Assume that F ∈ GERML,R : the proof of the non-ERM
case is very similar (but simpler since n disappears). First

Suppose δ = 0, so E‖zλ‖2 ≤
√

2d(∆λ+2
√

2α
λ )

ε . Then
∆λ ≤ 2(L+λR)

λn ≤ 4L
λn ≤ 4

√
2R
√

ε
nd by our choice of λ

and assumption that d
εn ≤ 1. Also, 1

λ <
√

2RL

√
d
εn . Using

these estimates and the above estimate for excess risk gives

EAF (wA(X), X)− F (w∗(X), X) ≤ 2L×[
2
√
α

√
R

L

(εn
d

)1/4

+
√

2
d

ε

(
4
√

2R

√
ε

nd
+ 4
√

2
√
α

√
R

L
(
εn

d
)1/4

)]

+ LR

√
d
εn

2

≤ 16
√
α
√
LR

(εn
d

)1/4

(1 +
d

ε
) + 16.5LR

√
d

εn
,

as claimed. Then plug in α.
Next, suppose δ ∈ (0, 1

2 ). Then E‖zλ‖2 ≤
√
d(cδ+

√
c2δ+ε)

ε

(
∆λ + 2

√
2α
λ

)
. Now λ =

L

R
√

1+ εn

d1/2(cδ+
√
c2
δ
+ε)

< L

R
√

εn

d1/2(cδ+
√
c2
δ
+ε)

≤

L
R

√√
d(cδ+

√
c2δ+ε)

εn and ∆λ ≤ 4L
λn ≤

4
√

2Rn ( εn√
d(cδ+

√
c2δ+ε)

2
)1/2. Using these estimates and

the estimates for each component of excess risk, as above,
gives the first statement of part 2b). Using the assumptions
and estimates above, it is easy to verify that the prescribed
choices of α yield the second statements in each part of the
theorem.

We can now prove Theorem 2.3: Recall that the itera-
tion complexity of the subgradient method on Fλ for find-
ing wT such that Fλ(wT (X), X)) − Fλ(w∗λ(X), X) ≤ α

is T ≤ 2(L+λR)2

λα ≤ 8L2

λα (Aravkin et al. 2017) by λ-strong



convexity and (L+ λR)-Lipschitzness of Fλ(·, X), as well
as our choices of λ (see proof of Theorem 0.4). Then plug-
ging in the exact choices of λ and α gives the risk bound
results. For runtime results, multiply the iteration complex-
ity by d since each iteration requires one gradient evaluation
of F.

Proof of Theorem 2.4
We begin with a more general result:

Theorem 0.5 Run Algorithm 2 with accuracy α as
given below and λ given as follows: if δ = 0, set

λ :=


(
βL2

R2

)1/3 (
d
εn

)2/3
if ∈ J ERMβ,L,R(

βL2

R2

)1/3 (
d
ε

)2/3
if ∈ Jβ,L,R \ J ERMβ,L,R .

If δ ∈ (0, 1
2 ), set λ :=

(
βL2

R2

)1/3
(√

d(cδ+
√
c2δ+ε)

εn

)2/3

if ∈ J ERMβ,L,R(
βL2

R2

)1/3
(√

d(cδ+
√
c2δ+ε)

ε

)2/3

if ∈ Jβ,L,R \ J ERMβ,L,R .

1. Suppose F ∈ Jβ,L,R.
a) Let δ = 0,

(
d
ε

)2 ≤ L
Rβ .

Then EAF (wA(X), X) − F (w∗(X), X) ≤
65β1/3L2/3R4/3

(
d
ε

)2/3
+ α[16(RβL )2/3(dε )4/3 + 1] +

64
√
αR
√
β(dε ).

In particular, setting α =

min
{
L4/3R2/3

β1/3 ( εp )2/3, β1/3L2/3R4/3
(
d
ε

)2/3}
implies

EAF (wA(X), X) − F (w∗(X), X) ≤
β1/3L2/3R4/3146

(
d
ε

)2/3
.

b) Let δ ∈ (0, 1
2 ),

(√
d(cδ+

√
c2δ+ε)

ε

)2

≤ L
Rβ .

Then EAF (wδA(X), X) − F (w∗(X), X) ≤

16.5β1/3L2/3R4/3

(√
d(cδ+

√
c2δ+ε)

ε

)2/3

+

α

[
1 +

(
βR
L

)2/3
(d(cδ+

√
ε)2)2/3

ε4/3

]
+ 8
√
αR
√
β
√
d(cδ+

√
ε)

ε .

In particular, setting

α = min

L4/3R2/3

β1/3

(
ε√

d(cδ +
√
c2δ + ε)

)2/3

,

β1/3L2/3R4/3

(√
d(cδ +

√
c2δ + ε)

ε

)2/3

implies EAF (wδA(X), X) − F (w∗(X), X) ≤

27β1/3L2/3R4/3

(√
d(cδ+

√
c2δ+ε)

ε

)2/3

.

2.Suppose F ∈ J ERMβ,L,R .

a) Let δ = 0,
(
d
εn

)2 ≤ L
Rβ .

Then EAF (wA(X), X) − F (w∗(X), X) ≤
65β1/3L2/3R4/3

(
d
εn

)2/3
+ α

[
16(RβL )2/3 d4/3n2/3

ε4/3
+ 1
]

+

64
√
αRβ1/2 d

ε .
In particular, setting α =

min
{
L4/3R2/3

β1/3 ( εp )2/3 1
n4/3 , β

1/3L2/3R4/3
(
d
εn

)2/3}
implies EAF (wA(X), X) − F (w∗(X), X) ≤
146β1/3L2/3R4/3

(
d
εn

)2/3
.

b) Let δ ∈ (0, 1
2 ),

(√
d(cδ+

√
c2δ+ε)

εn

)2

≤ L
Rβ .

Then EAF (wδA(X), X) − F (w∗(X), X) ≤

16.5β1/3L2/3R4/3

(√
d(cδ+

√
c2δ+ε)

εn

)2/3

+

α

[
1 + n2/3

(
βR
L

)2/3 (d(cδ+
√
c2δ+ε)

2)2/3

ε4/3

]
+

8
√
αR
√
β
√
d(cδ+

√
c2δ+ε)

ε .
In particular, setting

α = min

L4/3R2/3

β1/3

(
εn√

d(cδ +
√
c2δ + ε)

)2/3
1

n2
,

β1/3L2/3R4/3

(√
d(cδ +

√
c2δ + ε)

εn

)2/3

implies EAF (wδA(X), X) − F (w∗(X), X) ≤

27β1/3L2/3R4/3

(√
d(cδ+

√
c2δ+ε)

εn

)2/3

.

To prove Theorem 0.5, first decompose excess risk into 3
terms as usual:

EAF (wA(X), X)− F (w∗(X), X) =

EA[F (wT (X) + zλ, X)− Fλ(wT (X) + zλ, X)]︸ ︷︷ ︸
a©

+

EAFλ(wT (X) + zλ, X)− Fλ(w∗λ(X), X)︸ ︷︷ ︸
b©

+

Fλ(w∗λ(X), X)− F (w∗(X), X)︸ ︷︷ ︸
c©

.

Now bound the terms as follows: a© =
−λ2E‖wA,λ(X)‖22 ≤ 0. By the descent lemma (note
Fλ(·, X) is (β + λ)-smooth) and independence of the noise
zλ and ∇Fλ(w,X), we have b© =

E[Fλ(wT + zλ, X)− Fλ(wT , X)] + E[Fλ(wT , X)− Fλ(w∗λ, X)]

≤ E[〈∇Fλ(wT (X), X)), zλ〉+
β + λ

2
‖zλ‖22] + α

=
β + λ

2
E‖zλ‖22 + α.

Lastly, c© = [Fλ(w∗λ(X), X) − Fλ(w∗(X), X)] +

[Fλ(w∗(X), X) − F (w∗(X), X)] < 0 + λ
2 ‖w

∗(X)‖22 ≤
λR2

2 since w∗λ(X) is the unique minimizer of Fλ(·, X)
by strong convexity. Hence EAF (wA(X), X) −
F (w∗(X), X) ≤ λR2

2 + (β + λ)E‖zλ‖22 + α.



Assume that F ∈ J ERMβ,L,R : the proof of the non-ERM
case is very similar, but simpler since n disappears. First

Suppose δ = 0, so E‖zλ‖22 ≤
2d2(2
√

2α
λ +∆λ)2

ε2 . Note
that for our choice of λ given in Theorem 0.5, λ ≤ β

and (L + λR) ≤ 2L by the assumption
(
d
εn

)2 ≤ L
Rβ

and since L ≤ Rβ always holds for F ∈ Jβ,L,R. Also,
∆λ ≤ 2(L+λR)

λn ≤ 4L
λn ≤ 4(LR

2

β )1/3( εnd )2/3. Therefore,

EAF (wA(X), X)− F (w∗(X), X) ≤ λR2

2
+ 16β

(
d

ε

)2

×
[
4
L2

λ2n2
+
α

λ
+ 4

√
α

λ

L

λn

]
+ α.

Plugging in λ =
(
βL2

R2

)1/3 (
d
εn

)2/3
, using the estimates

above and the fact that d
εn ≤ 1 by assumption gives

λR2, β

(
d

ε

)2
L2

λ2n2
≤ β1/3L2/3R4/3

(
d

εn

)2/3

.

Also, by the choice of λ,

β

(
d

ε

)2 [
α

λ
+ 4

√
α

λ

L

λn

]
≤ α

[(
Rβ

L

)2/3
d4/3n2/3

ε4/3

]
+ 4
√
αRβ1/2

(
d

ε

)
.

Putting these pieces together proves the first statement in
part 2a). Verifying the second statement is routine, using
the assumptions stated in the theorem and the estimates
obtained above.

Now Suppose α ∈ (0, 1
2 ). Then E‖zλ‖22 ≤

d(cδ+
√
c2δ+ε)(2

√
2α
λ +∆λ)2

ε2 . Again, the assumption(√
d(cδ+

√
c2δ+ε)

εn

)2

≤ L
Rβ implies λ ≤ β and L+λR ≤ 2L.

Expanding the square in the numerator implies

EAF (wδA(X), X)− F (w∗(X), X) ≤ λR2

2

× β
d(cδ +

√
c2δ + ε)

ε2

[
∆2
λ + 2∆λ

√
α

λ
+
α

λ

]
+ α

≤ 16.5β1/3L2/3R4/3

(√
d(cδ +

√
c2δ + ε)

εn

)2/3

+

β
d(cδ +

√
c2δ + ε)

ε2

[
8L

λn

√
α

λ
+
α

λ

]
+ α,

where in the last line we plugged in estimates for λ and
∆λ to bound the first two terms in the sum. Then plugging

in λ =
(
βL2

R2

)1/3
(√

d(cδ+
√
c2δ+ε)

εn

)2/3

and using the esti-

mates and assumptions completes the proof of the first state-
ment of the theorem. Again, the second statement is easy to

verify by plugging in the prescribed α. This proves Theo-
rem 0.5.

Theorem 2.4 then follows from the above theorem and the
iteration complexity of AGD (Nesterov 2014).

Proofs of Section 3 Results
We begin with a definition and lemma from (Bassily et al.
2019) that will be very useful for us.
Definition 2 (Uniform stability) Let α > 0. An algorithm
A : Xn → W is α-uniformly stable (w.r.t loss function f )
if for any pair of data sets X,X ′ ∈ Xn differing by at most
one point (i.e. |X∆X ′| ≤ 2), we have

sup
x∈X

EA[f(A(X), x)− f(A(X ′), x)] ≤ α.

Lemma 0.4 Let A : Xn → W be an α-uniformly stable
algorithm w.r.t. loss function f and let X ∼ Dn. Then

EX∼Dn,A[F (A(X),D)− F̂ (A(X), X)] ≤ α.
Combining Lemma 0.4 with our excess empirical risk

bounds from before for each ERM function class will en-
able us to upper bound the population loss.

Proof of Theorem 3.1
Decompose

EX∼Dn,AF (wA(X),D)− F (w∗(D),D) =

EX∼Dn,A[F (wA(X),D)− F̂ (wA(X), X)]︸ ︷︷ ︸
a©

+

EX∼Dn,A[F̂ (wA(X), X)− F̂ (ŵ(X), X)]︸ ︷︷ ︸
b©

+

EX∼Dn,AF̂ (ŵ(X), X)− F (w∗(D),D)︸ ︷︷ ︸
c©

,

as before. Observe that ∆T := sup|X∆X′|≤2 ‖wT (X) −
wT (X ′)‖2 ≤ ∆F̂ + 2

√
2α
µ ≤ 2( Lµn +

√
2α
µ ), and A

is L∆T -uniformly stable with respect to f . Hence a© ≤
2(L

2

µn + L
√

2α
µ ), by Lemma 0.4. Plugging in the choices

of α given in the Corollary shows that a© ≤ 5L
2

µ . Next, by
Theorem 0.2,

b© = EA[F̂ (wA(X), X)− F̂ (ŵ(X), X)] ≤ 9
L2

µ

d

εn

if δ = 0 and EA[F̂ (wA(X), X) − F̂ (ŵ(X), X)] ≤
6L

2

µ

√
d(cδ+

√
c2δ+ε)

εn if δ ∈ (0, 1
2 ) with the given choices of

α and T. Finally, c© ≤ 0. Putting these estimates together
completes the proof of the excess loss bounds.

Recall that running SGD on F ∈ FERMµ,L with ηt =
2

µ(t+1) produces a point ŵT such that EF (ŵT , X) −
F (w∗(X), X) ≤ α in T = 2L2

µα stochastic gradient eval-
uations (Bubeck 2015, Theorem 6.2). Since each iteration
amounts to just one gradient evaluation of f(w, xi) (with
runtime d), the resulting runtime of the full method is
O(dT ).



Proof of Theorem 3.2
The proof follows exactly as the proof of Theorem 3.1, but
using Theorem 0.3 instead of Theorem 0.2 to bound b©. The
runtime bounds follow from applying the following:

Theorem 0.6 (Allen-Zhu 2018, Theorem 2.1 simplified) Let
F : Rd → R, F (w) = 1

n

∑n
i=1 fi(w) = 1

n

∑n
i=1 gi(w) +

ψ(w), where each gi is convex and β-smooth, ψ is µ-
strongly convex, and κ := β

µ . Then running Katyusha for

T = O
(

(n+
√
nκ) log

(
F (w0)−F (w∗)

α

))
stochastic gradi-

ent iterations returns a point w̃T ∈ Rd such that F (w̃T ) −
F (w∗) ≤ α.

Clearly, given any F ∈ HERMβ,µ,L,R and any X ∈
Xn, we can write F (w,X) = 1

n

∑n
i=1 f(w, xi) =

1
n

∑n
i=1 g(w, xi) + ψ(w), where ψ(w) := µ

2 ‖w‖
2
2 is µ-

strongly convex, g(·, xi) = f(·, xi) − ψ(·) is convex and
(β − µ)-smooth (hence β-smooth) for all xi ∈ X.

Proof of Theorem 3.3
Decompose

EX∼Dn,AF (wA(X),D)− F (w∗(D),D) =

EX∼Dn,A[F (wA(X),D)− F̂ (wA(X), X)]︸ ︷︷ ︸
a©

+

EX∼Dn,A[F̂ (wA(X), X)− F̂ (ŵ(X), X)]︸ ︷︷ ︸
b©

+

EX∼Dn,AF̂ (ŵ(X), X)− F (w∗(D),D)︸ ︷︷ ︸
c©

,

as before. First, A is L∆T -uniformly stable with respect
to f , and ∆T = sup|X∆X′|≤2 ‖wT (X) − wT (X ′)‖2 ≤

∆λ + 2
√

2α
λ ≤ 2[L+λR

λn +
√

2α
λ ], using Theorem 2.3 and

strong convexity of Fλ. Hence a© ≤ 2L
[
L+λR
λn +

√
2α
λ

]
by

Lemma 0.4. Now

b© ≤ (L+ λR)

[√
2α

λ
+ E‖zλ‖2

]
+
λR2

2
,

by decomposing and bounding as done in the proof of The-
orem 0.4. Also, c©≤ 0 as usual. Then combining the above
with our choices of λ, α, T and using plugging in expected
values of the noise completes the proof of the loss bounds.
The runtime bounds follow from the SGD runtime bounds
stated earlier and the choices of λ prescribed above.

Proof of Theorem 3.4
The proof follows almost exactly as the proof of Theorem
3.3 above, but uses the descent lemma to bound b© with a
(β+λ)

2 E‖zλ‖2 term (instead of (L + λR)E‖zλ‖2) and uses
Theorem 2.4 (Katyusha) instead of Theorem 2.3 (SGD),
along with the alternative choices of α and λ, to obtain the
stated loss bounds in faster runtime.

Proofs of Section 4 Results
Proof of Proposition 4.1
We first require a tighter estimate of the sensitivity of Fτ :

Lemma 0.5 Let τ > 0. Suppose f(·, x) is L-Lipschitz on
B(0, R) (where ‖w∗(X)‖ ≤ R) and µ-strongly convex for
all x ∈ X . Moreover, assume aR ≤ f(w, x) ≤ AR for all
w ∈ W and all x ∈ X . Then

∆Fτ ≤
2LCτ
µn

where Cτ := eτ(AR−aR).

To prove the lemma, we follow the same approach used
in proving ??. Let X,X ′ ∈ Xn such that |X∆X ′| ≤
2 and assume WLOG that xn 6= x′n. We apply
Lemma 0.2 with gτ (w) := Fτ (w,X) − Fτ (w,X ′) and
Gτ (w) := Fτ (w,X ′). Denote vi(τ, w) = eτf(w,xi)∑n

j=1 e
τf(w,xj)

and v′i(τ, w) = eτf(w,x
′
i)∑n

j=1 e
τf(w,x′

j
)
. Then observe that

∇gτ (w) = ∇Fτ (w,X)−∇Fτ (w,X ′)

=

n∑
i=1

vi(τ, w)∇f(w, xi)− v′i(τ, w)∇f(w, x′i)

= vn(τ, w)∇f(w, xn)− v′n(τ, w)∇f(w, x′n).

Now convexity and L-Lipschitzness of f imply

‖∇gτ (w)‖ ≤ 2Lmax{vn(τ, w), v′n(τ, w)} ≤ 2LCτ .

This proof is completed by noticing that Gτ is µ-strongly
convex and appealing to Lemma 0.2.

Then to obtain Proposition 4.1, simply plug the esti-
mate for ∆Fτ given above into the proof of Theorem 0.2
and set α = L2Cτ

µn min
{

1
n ,

Cτd
ε

}
for δ = 0 and α =

L2

µ Cτ min

{
Cτ
n2 ,

√
d(cδ+

√
c2δ+ε)

εn

}
for δ ∈ (0, 1

2 ). The run-

time bounds are proved by recalling that the iteration com-
plexity of the subgradient method for obtaining an α-
suboptimal point wT of Fτ is T = d 2L2

µα

⌉
(and noting that

each gradient evaluation of Fτ has runtime O(nd)).

Proof of Lemma 4.2
First, we have ∇Fτ (w,X) =

∑n
i=1 vi(w, τ)∇fi(w),

where vi(w, τ) := eτf(w,xi)∑n
j=1 e

τf(w,xj)
and we denote

fi(w) := f(w, xi). Now for any w1, w2 ∈ W ,
we have ‖∇Fτ (w1, X)−∇Fτ (w2, X)‖2 =
‖
∑n
i=1 (vi(w1, τ)∇fi(w1)− vi(w2, τ)fi(w2))‖

2
≤∑n

i=1 (vi(w1, τ)β‖w1 − w2‖2 + Lvi‖w1 − w2‖2L) ≤
β‖w1 − w2‖2 + L‖w1 − w2‖2

∑n
i=1 (Lvi) ,

where Lvi denotes the Lipschitz constant of
vi(w, τ) as a function of w. Next, we compute
Lvi by bounding ‖∇vi(w, τ)‖ : ∇vi(w, τ) =
τeτfi(w)∇fi(w)(

∑n
j=1 e

τfj(w))−τ
∑n
j=1 e

τfj(w)∇fj(w)eτfi(w)

(
∑n
j=1 e

τfj(w))
2



=
τ
∑n
j=1 e

τfj(w)eτfi(w)(∇fi(w)−∇fj(w))

(
∑n
j=1 e

τfj(w))
2 . Taking the norm of

both sides and using L-Lipschitzness of f(·, xi) implies

Lvi ≤ 2Lτ
eτfi(w)∑n
j=1 e

τfj(w)
,

and hence
n∑
i=1

Lvi ≤ 2Lτ.

Therefore, ‖∇Fτ (w1, X) − ∇Fτ (w2, X)‖2 ≤ β‖w1 −
w2‖2 + L‖w1 − w2‖2

∑n
i=1 Lvi

≤
(
β + 2L2τ

)
‖w1 − w2‖2, which completes the proof.

Proof of Proposition 4.2
Plugging the estimate for ∆Fτ from Lemma 0.5 into the
proof of Theorem 0.3 and set

α =
L2

µn2


min

{
κτ
(
d
ε

)2
, C2

τ

}
if δ = 0

min

{
κτ

(√
d(cδ+

√
c2δ+ε)

ε

)2

, C2
τ

}
if δ ∈ (0, 1

2 )
.

This yields

≤ 26κτ
L2Cτ
µ

(
d

εn

)2

if δ = 0, and

≤ 13.5κτ
L2Cτ
µ

(√
d(cδ +

√
c2δ + ε)

εn

)2

if δ ∈ (0, 1
2 ). The runtime claim follows by recalling the

Õ(
√
κτ ) gradient complexity of AGD.

Proof of Theorem 4.1
Theorem 4.1 is an immediate consequence of Theorem 0.3
combined with the following:
Proposition 0.2 ((Lin et al. 2020, Thm 5.1/Cor 5.2)) As-
sume G(·, v) is µ-strongly convex, β-smooth, (with condi-
tion number κ = β/µ) for all v ∈ Bν , G(w, ·) is βv-smooth
and concave as a function of v ∈ Bν for all w ∈ W. Then
1. Minimax-APPA returns an α-saddle point in at most

T = Õ(
√

κβv
α ν) total gradient evaluations.

2. If, in addition, G(w, ·) is µv-strongly concave, then
Minimax-APPA returns an α-saddle point in at most T =

Õ(
√
κκv) gradient evaluations, where κv = βv

µv
is the con-

dition number.
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