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Abstract

Random forests are a popular method for classification and
regression due to their versatility. However, this flexibility can
come at the cost of user privacy, since training random forests
requires multiple data queries, often on small, identifiable sub-
sets of the training data. Privatizing these queries typically
comes at a high utility cost, in large part because we are pri-
vatizing queries on small subsets of the data, which are easily
corrupted by added noise. In this paper, we propose DiPriMe
forests, a novel tree-based ensemble method for regression
and classification problems, that ensures differential privacy
while maintaining high utility. We construct trees based on a
privatized version of the median value of attributes, obtained
via the exponential mechanism. The use of the noisy median
encourages balanced leaf nodes. This avoids the need to query
very small subsets of the data, and ensures that the noise added
to the parameter estimate at each leaf is not overly large. The
resulting algorithm, which is appropriate for real or categori-
cal covariates, exhibits high utility while ensuring differential
privacy.

1 Introduction
The prevalence of data has been one of the key drivers of
technological innovation in the last decade. The abundance of
data, allied with ever-increasing computing power, has driven
the rapid development of sophisticated machine learning
techniques, many of which have achieved hitherto unseen
levels of performance. Data collection today is pervasive,
across applications and devices. This has resulted in data
privacy becoming a matter of public concern.

It has long been known that querying even aggregated or
perturbed data can lead to leakage of private information
(Dinur and Nissim 2003), motivating the development of
databases and algorithms that mitigate such privacy breaches.
Differential privacy (Dwork et al. 2006) is one of the most rig-
orous ways of analysing and ameliorating such privacy risks.
If an algorithm is ε-differentially private, it means we can
apply a multiplicative bound to the worst-case leakage of an
individual’s private information. Many algorithms have been
developed with this goal in mind, such as differentially pri-
vate variants of linear regression (Kifer, Smith, and Thakurta
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2012), k-means clustering (Huang and Liu 2018; Su et al.
2016) and expectation maximization (Park et al. 2016).

Such privacy guarantees come at a cost—modifying an
algorithm to be ε-differentially private typically involves
adding noise to any queries made by that algorithm, which
will tend to negatively affect the algorithm’s performance.
This cost will tend to be higher when privatizing more com-
plex algorithms that require multiple queries of the data, such
as non-linear regression and classification algorithms (Smith
et al. 2018; Abadi et al. 2016). One such family of non-linear
regression and classification algorithms, that allows for flex-
ible modeling but involves multiple queries, is the class of
tree-based methods, such as random forests and their variants
(Breiman 2001; Geurts, Ernst, and Wehenkel 2006).

Tree-based ensemble methods make minimal assumptions
on the parametric forms of relationships within the data,
and can be easily applied to a mixture of continuous and
categorical covariates. However, building trees that capture
the appropriate structure requires many queries of the data,
making them challenging to privatize. Further, since the trees
partition the data into arbitrarily small subsets, the noise that
must be added to each subset to ensure differential privacy
can quickly swamp the signal.

We propose differentially private median (DiPriMe)
forests, a novel, differentially private machine learning algo-
rithm for nonlinear regression and classification with poten-
tially sensitive data. Rather than directly privatize queries in
an existing random forest framework, we start by modifying
the underlying non-private trees to be robust to the addition
of noise. We note that the negative impact of added noise
is greatest when there are few data points associated with
certain leaf nodes, especially in regression. Splitting based
on the median value at a node avoids such a scenario. The
low sensitivity of the median to perturbations of the data
mean that, even after privatizing the median query, we still
achieve balanced leaf node occupancy, and therefore avoid
overwhelming the signal at each leaf with noise.

The DiPriMe algorithm offers several advantages over
existing private random forests. Because the underlying non-
private algorithm is designed with privatization in mind, they
achieve impressive predictive performance across a range of
tasks by minimizing the negative effects of added noise. The
fact that their construction explicitly depends on the distri-
bution of the covariates facilitates the derivation of utility



bounds. Such bounds are challenging to derive for algorithms
without this form of dependence, since the utility is highly
dependent on the data distribution; as a result, this is to our
knowledge the first utility result for a fully differentially pri-
vate tree-based algorithm. And finally, unlike most existing
approaches, they can easily deal with continuous or categori-
cal covariates, without excessive additional privacy cost.

We begin by reviewing the concept of differential privacy,
and discussing related approaches, in Sec. 2, before introduc-
ing DiPriMe forests in Sec. 3. We provide theoretical and
empirical guarantees on both the privacy and the utility of our
approach. In Sec. 4 we show that our method outperforms ex-
isting differentially private tree-based algorithms on a variety
of classification and regression tasks.

2 Preliminaries
2.1 Differential Privacy
Differential privacy (DP, Dwork 2008) is a rigorous frame-
work for limiting the amount of information that can be in-
ferred from an individual’s inclusion in a database. Formally,
a randomized mechanism F satisfies ε-differential privacy
for all datasets D1 and D2 differing on at most one element
and all S ⊆ Range(F) if

Pr[F(D1) ∈ S] ≤ eεPr[F(D2) ∈ S] . (1)

This implies that the inclusion of an individual’s data can
change the probability of any given outcome by at most a
multiplicative factor of eε. A lower value of ε provides a
stronger privacy guarantee, as it limits the effect the omission
of a data point can have on the statistic.

Typically, the mechanism F is a randomized form of some
deterministic query f . To determine the degree of random-
ization required to satisfy (1), we need to know the global
sensitivity ∆(f) = maxD1,D2 ‖f(D1)− f(D2)‖1, which
tells us the maximum change in the outcome of the query f
due to changing a single data point. Armed with the global
sensitivity, we can use a number of approaches to ensure
ε-DP; we outline the two most common mechanisms below.
• Laplace mechanism Starting with a deterministic query
f : D → Rd, where D is the space of possible data sets,
we can construct an ε-DP query-answering mechanism that
adds appropriately scaled Laplace noise, so that (Dwork,
Roth et al. 2014)

F(X) =f(X) + (Y1, Y2, . . . , Yd)

Yi
iid∼ Laplace(0,∆i(f)/ε),

(2)

where ∆i(f) denotes the sensitivity of the i-th coordinate
of the output. Note how the noise added scales as 1/ε
– increased privacy directly translates to increased noise
variance.
• Exponential mechanism The Laplace mechanism as-

sumes that our query returns values in Rd. A more gen-
erally applicable privacy mechanism is the exponential
mechanism (McSherry and Talwar 2007), which allows
us to pick an outcome r ∈ R, whereR is some arbitrary
space. We define a scoring function q : D × R → R
with global sensitivity ∆(q), and a base measure µ on

R. For any dataset D ∈ D, selecting an outcome r with
probability

Pr[F(D) = r] ∝ eεq(D,r)/2∆(q) × µ(r) (3)
ensures ε-differential privacy. Clearly, the scoring function
q should be constructed such that preferred outputs are
assigned higher scores.
Often, algorithms will involve multiple queries, requir-

ing us to account for the overall differential privacy of the
composite algorithm. We can make use of two composition
theorems to obtain the overall privacy level (McSherry 2009):
• Sequential composition tells us that a sequence of differ-

entially private queries maintains differential privacy. Let
Fi each provide εi-differential privacy. Then sequentially
evaluating Fi(X) provides (

∑
i εi)−differential privacy.

• Parallel composition tells us that the privacy guarantee
for a set of queries on disjoint subsets of data is only
limited by the worst-case privacy guarantee for any of the
queries. If Fi each provide εi-differential privacy, and Di

are arbitrary disjoint subsets of the dataset D, then the
sequence of Fi(X ∩Di) provides (maxi εi)−differential
privacy.

2.2 Differentially private tree-based methods
There have been several methods proposed in recent literature
to learn ensembles of decision trees for classification in a
differentially private manner (although, to the best of our
knowledge, this paper is the first to consider regression);
Fletcher and Islam (2019) provide an excellent survey. As we
discuss in Sec. 3, most algorithms use the Laplace mechanism
to privatize leaf node counts, and differ on the method of tree
construction.

Most algorithms can be seen as privatized versions of ran-
dom forests (Breiman 2001), which greedily choose optimal
splits at internal nodes, and store sufficient statistics at the
leaf nodes. One way of determining the splits in a decision
tree is to choose the split with lowest entropy. Friedman and
Schuster (2010) privatizes this by noising the node counts
using the Laplace mechanism, and then selecting an attribute
to split on using the exponential mechanism with entropy as
the score. Sub-trees are iteratively constructed for each value
of the attribute thus chosen. This method is built upon in the
differentially private random forest (DP-RF) algorithm (Patil
and Singh 2014), which builds multiple private trees using
bootstrapped samples and considers multiple splitting metics.
The trees are grown iteratively until they reach a specified
maximum depth or the node is pure, i.e., contains instances
of a single class. The differentially private decision forest
(DP-DF) (Fletcher and Islam 2015) uses local sensitivity to
privatize the leaf-node sufficient statistics, and incorporates a
pruning method. The differentially private greedy decision
forest (Xin et al. 2019) partitions the data into disjoint sub-
sets, to reduce the overall privacy cost. (Rana, Gupta, and
Venkatesh 2015) proposes a relaxation on the DP-RF ap-
proach so that the ensemble of trees preserves the variance,
instead of the entire distribution of the data. This relaxation
enables their method to achieve better performance, and al-
lows for numerical covariates, at the expense of losing any
claim to ε-differential privacy.



The above algorithms all assume categorical covariates,
and at each node, there is one child node per category of
the selected attribute. Continuous covariates must therefore
be discretized in some manner; if this is done in a data-
dependent manner, we must expend privacy budget to do so
(Kotsiantis and Kanellopoulos 2006). Friedman and Schuster
(2010) do propose a method of splitting continuous covari-
ates via the exponential mechanism, but this significantly
increases the privacy budget, as discussed in Fletcher and
Islam (2015).

An alternative approach is to bypass the greedy split-
ting mechanism altogether, generating and selecting splits
at random similar to the extremely randomized trees algo-
rithm (Geurts, Ernst, and Wehenkel 2006). Jagannathan, Pil-
laipakkamnatt, and Wright (2009) and Bojarski et al. (2014)
both use random splits to build their trees, allowing the en-
tire privacy budget to be devoted to privatizing the leaf node
sufficient statistics, and allowing categorical or continuous
covariates.

3 Differentially private median forests
When designing differentially private algorithms, we wish to
minimize the negative impact of privatization on the overall
utility. In a tree-based setting, we need to privatize two things:
determining the locations of splits, and estimating the node
parameters. We consider these in turn.

Estimating leaf node parameters In a tree-based model,
we estimate appropriate sufficient statistics at each leaf node—
typically the mean in a regression setting, and the class
counts in a classification context. In both cases, we can use
the Laplace mechanism to provide appropriately privatized
statistics—the approach taken by almost all existing differ-
entially private tree algorithms. To render the count query
at a given node ε`-DP, we can add Laplace(0, 1/ε`) noise to
each class count. In the regression context, if we haveNi data
points associated with the ith leaf node, and we have bounded
target Y ≤ B, we can achieve ε`-DP at a single leaf node
by adding Laplace(0, 2B/Niε`) noise to the mean. Since the
leaf nodes are disjoint, the set of all leaf-node queries is also
ε`-DP, following the parallel composition theorem.

The utility of the resulting estimate at the ith leaf depends
on two things: the value of ε`, and the number Ni of data
points associated with the leaf node. Small values of ε`, and
small values ofNi, both lead to the Laplace noise dominating
the signal of interest. Therefore, to improve the utility of our
estimates, we must either increase the per-leaf-node privacy
budget, or increase the number of data pointsNi. In particular,
we wish to avoid the situation where the privacy budget ε` is
less than 1/Ni, which implies that the expected magnitude
of the Laplace noise is greater than that of the signal.

Obtaining non-leaf node splits In most non-private ran-
dom forests, the value at which a non-leaf node is split is
determined by maximizing some score, such as the Gini
index. We can privatize this by randomizing the selection pro-
cedure, an approach taken by Friedman and Schuster (2010),
Patil and Singh (2014) and Fletcher and Islam (2015). In

these works, the authors score attribute-specific candidate
splits with one child node for each category of that attribute,
and then selects an attribute according to the exponential
mechanism.

Unfortunately, the design decisions made in these private
algorithms are at odds with the goal of maximizing per-leaf
node utility. In each case, a subtree is learned for each cate-
gory of the chosen categorical covariate (or each unique value
of the discretized continuous covariate), leading to more low-
occupancy nodes than would be expected in a binary tree.
This in turn leads to more low-occupancy leaf nodes where
the added Laplace noise overwhelms the signal from the data.
In addition to harming the leaf node utility, low-occupancy
sub-trees are a major hindrance to good regression trees.
Typically, the sensitivity of the scoring function is inversely
proportional to the node count, meaning that the selection
of attribute to split on will also be very noisy; sufficiently
low counts would result in this selection being no better than
random. Private versions of Extremely Random Trees, such
as those proposed by Bojarski et al. (2014) and Jagannathan,
Pillaipakkamnatt, and Wright (2009), avoid diverting budget
from the leaf nodes by picking their splits entirely at random.
In practice, this can sometimes improve performance, if the
benefit of increased leaf node privacy budget ε` outweighs
the benefit of chasing the optimal tree structure. However,
the relatively large per-leaf node ε` is unfortunately paired
with highly variable leaf node occupancy Ni, since splits are
selected without consideration of the data distribution.

3.1 Differentially Private Median (DiPriMe)
Forests

As discussed above, generating all possible splits for a given
attribute, or selecting a split at random, can lead to low-
occupancy nodes. In a non-private context, there is little
downside to such behavior. But once we begin seeking dif-
ferential privacy, low-occupancy nodes increase noise in the
tree-selection process and lead to poor leaf-node utility. We
therefore design an algorithm centered on creating balanced
leaf nodes.

In a non-private context, if an attribute is continuous, we
could achieve optimal leaf node balance by choosing to split
on the median value. In a private context, we can use a dif-
ferentially private estimate of the median. Let Di = (Xi, Yi)
be a numeric dataset, to be split on attribute a with bounded
range Ra = [aL, aU ] ⊂ R. We score potential splits r ∈ Ra
according to q(r) = ||Xi,a∩[aL, r)|−|Xi,a∩[r, aU ]||, noting
that q(r) is piecewise constant between the data points. The
sensitivity of q(r) is 1, so we can achieve εs-DP by selecting
a bin with probability

Pr(r) ∝ exp
{
−εs

2

∣∣∣|Xi,a ∩ [aL, r)| − |Xi,a ∩ [r, aU ]|
∣∣∣} .

(4)

If attributes are categorical, in a non-private context we
can achieve optimal leaf node balance by calculating q(C) =
||C| − |Xi \ C|| for all possible splits (C,Xi \ C) that are
consistent with values of the selected attribute, and selecting
the maximizing split. The sensitivity of q(C) is 1, so we can



Algorithm 1 Differentially Private Median (DiPriMe) Tree

1: class DIPRIMETREE (i, imax, k) . Initialize empty tree
2: if i ≤ imax then
3: d← i
4: dmax ← imax
5: K ← k
6: end if
7: end class
8:
9: procedure FITTREE(T ,D,A,RA,B,ε,ρ)

10: N = |D|
11: εs ← ερ

2dmax
, εa ← ερ

2dmax
, ε` ← ε(1− ρ)

12: if T.d = T.dmax or A = ∅ then
13: Store privatized mean or class counts in T .
14: return T
15: end if
16: T.ind, T.val← FINDSPLIT(D,A,RA,B, εs, T.K)
17: RLA,RRA,AL,AR,DL,DR ← SPLITRANGE(RA,A,

T.ind,T.val)
18:
19: TR ← DIPRIMETREE(T.d+ 1, T.dmax,T.K)
20: FITTREE(TR,DR,AR,RAR

,B,ε,ρ)
21: TL ← DIPRIMETREE(T.d+ 1, T.dmax,T.K)
22: FITTREE(TL,DL,AL,RAL

,B,ε,ρ)
23: end procedure
24:
25: procedure FINDSPLIT(D,A,RA,B,εs,K)
26: N = |D|
27: AS ← size-min{K, |A|} subset of attributes A.
28: for all a ∈ AS do
29: if a is categorical then
30: Draw subset Ca ⊂ Ra according to (5)
31: else . a is a continuous attribute
32: Draw split location r ∈ Ra according to (4)
33: Ca = Ra ∩ (−∞, r)
34: end if
35: MSEa ← mean squared error for chosen split
36: end for
37: Pick attribute ã according to (6).
38: return ã, Cã
39: end procedure
40:
41: procedure SPLITRANGE(RA,A, a,Ca,D)
42: RLA,RRA ← RA
43: AL, AR ← A
44: RLa ← Ca, R

R
a ← Ra \ Ca

45: if RLa cannot be further split (single category) then
46: AL ← AL \ a
47: end if
48: if RRa cannot be further split (single category) then
49: AR ← AR \ a
50: end if
51: DL = {(x, y) ∈ D : x ∈ RLA}
52: DR = D \DL

53: returnRLA,RRA,AL,AR,DL,DR

54: end procedure

achieve εs-DP by selecting a split (C,Xi\C) with probability

Pr(C,Xi \ C) ∝ exp
{
−εs

2

∣∣∣|C| − |Xi \ C|
∣∣∣} . (5)

Having selected a candidate split for each attribute, we
pick an attribute to split on using the exponential mechanism,
using the negative mean squared error as the scoring function.
The sensitivity of the mean-squared error is 4B2/Ni, where
the target value lies in [−B,B]. So, for a single split, we can
achieve εa-differential privacy by splitting on attribute ã with
probability

Pr(ã) ∝ exp

{
−εaNi

8B2

(
MSE(ã)

)}
, (6)

where MSE(ã) is the mean squared error associated with
that split.

We note that, unlike existing differentially private tree
algorithms, the non-private version of our algorithm does
not correspond to a commonly used tree model. Median
splits are not typically used in random forests. Such splits are
deterministic given the covariates, and agnostic to the target
variable, thereby leading to higher errors. While Breiman
(2004) considers median splits for lower branches of trees as
a simplifying assumption when obtaining consistency results,
he categorically states that the use of median splits will result
in higher error rates than greedily learned splits. Indeed, in
Sec. 4 we see that non-private median forests underperform
random forests and extremely random trees in general.

Median splits are, however, successful in a private context.
Having well-balanced splits offers little advantage in a non-
private setting, but is critical to ensuring good performance in
a differentially private setting. We find, in Sec. 4, that the re-
sulting robustness to the detrimental impacts of privatization
outweighs the benefits of using more sophisticated splitting
method. Further, the privatization of the median eliminates
the deterministic nature of the median splits, allowing better
performance when the optimal split is far from the median.

Privacy analysis We can calculate the overall privacy bud-
get of our algorithm using the parallel and sequential com-
position theorems. Since the candidate splits are on separate
attributes, the total privacy cost of selecting a differentially
private median for all attributes is εs, making the total pri-
vacy cost of selecting private medians for each attribute then
selecting an attribute εs + εa. Since the splits at a given depth
are performed on disjoint subsets of the data, the total privacy
cost of building the tree is therefore dmax(εs + εa) (where
dmax is the maximum tree depth), and the total cost including
privatizing the leaf nodes is dmax(εs + εa) + ε`.

As is common in tree-based algorithms, rather than use
a single tree, we construct an ensemble of NT trees. We
partition our data into NT subsets, and learn a DiPriMe
tree on each subset. Partitioning has two benefits. First, it
means that the overall privacy budget for the forest is still
dmax(εs+εa)+ε`, due to parallel composition. Second, it en-
courages variation between the tree structures, allowing better
exploration of the space. If we choose not to partition our data,
the overall privacy budget would NT (dmax(εs + εa) + ε`).



Algorithm 2 Differentially Private Median (DiPriMe) Forest

1: class DIPRIMEFOREST (nT , dmax, k)
2: NT ← nT , T ← {}
3: for i← 1, nT do
4: T ← DIPRIMETREE(0, dmax, k)
5: T ← T ∪ T
6: end for
7: end class
8:
9: procedure FITFOREST(F ,D,A,RA,B,ε,ρ)

10: NT = F.NT
11: Partition D = (X,Y ) into {Di}i=1,...,NT

12: i← 0
13: for all T ∈ F.T do
14: T ← FITTREE(T ,Di,A,RA,B,ε,ρ)
15: i← i+ 1
16: end for
17: end procedure

We split the overall privacy budget ε between the three
query-specific budgets ε`, εs and εa. We set ε` = (1 − ρ)ε,
and εs = εa = ρε/2dmax, for some ρ ∈ (0, 1).

We summarize the process of constructing a single
DiPriMe tree in Algorithm 1. Algorithm 2 describes how
we can combine multiple DiPriMe trees into a forest. We use
the following notation in Algorithms 1 and 2: D = (X,Y )
refers to the set of data points to which the tree T is being
fit. X denotes the input features and Y denotes the corre-
sponding target values. A refers to the set of attributes that
the tree can split on with RA = {Ra : a ∈ A} denoting
the corresponding range or categories. B is the upper bound
on the absolute value of the target, i.e., |yi| ≤ B, ε is the
total privacy budget for the tree, and ρ is the fraction of the
privacy budget allocated to determine the median split. We
include code in the supplement, and will make this public
upon publication.

3.2 Utility analysis
In general, the utility of a random forest—and the change
in utility due to privatizing that random forest—will depend
heavily on the data distribution. Particularly, the loss of utility
due to adding noise to a greedy split selection mechanism will
depend on how well alternative splits capture variation in the
data. This likely explains why, while utility results have been
obtained for differentially private trees with random splits
(Bojarski et al. 2014), to the best of our knowledge there
are no existing utility guarantees for differentially private
random forests with data-dependent splits.

The utility of the full DiPriMe tree algorithm, as described
in Algorithm 1, also depends on the data, due to the mecha-
nism for selecting the attribute on which to split. However, if
we simplify our assumption to select the attribute at random,
then we can provide bounds on the utility, relative to a non-
private version of the same algorithm. In practice, we found
that using the exponential mechanism to select the attribute
gave greater utility than random selection on the datasets we
considered.

In our analysis, we consider the regression task, and as-
sume all covariates are continuous and that the dataset can be
partitioned into equal-occupancy leaf nodes, i.e. N = c · 2d
for some nonnegative integer c. Both assumptions can easily
be relaxed. Let Obji the the sum of squared errors at the ith
leaf node of the non-private median tree, and Obj =

∑
i Obji

be the overall loss. Then we can bound the utility loss due to
privatizing the non-leaf node splits.
Theorem 1. Let Obj∗i be the loss under a median tree where
the splits have been privatized following (4), but where the
sufficient statistics at the leaf nodes are not privatized. Let
N∗i be the number of data points at the ith leaf node of this
tree, and let c be the number of data points at the leaf node
of the non-private tree. Then, for any t > 0,

|Obji − Obj∗i | ≤ 4B2t with probability min(ζ1, ζ2)

where |Y | ≤ B and

ζ1 =
γ

ε2st
2

ζ2 = max
{

2e−ε
2
st

2/4γ , 2e−εsβt/2
}

with γ = 8(1−2−2d)
3 , β2 = 1

2 (
√

1− 2/e+ 1).
Corollary 1.1.

|Obj− Obj∗| ≤ 2d+2B2t with probability min(ζ1, ζ2)

We can then bound the utility loss due to privatizing both
non-leaf and leaf node queries.

Theorem 2. Let Õbj total loss due to both privatizing median
splits and privatizing leaf node means. Then, E[Õbj]−Obj ≤(
B2t+ 2B2

ε2`(N/2d−t)

)
2d+2 with probability at least 1 − ζ,

where ζ = 21−d min(ζ1, ζ2).
Proofs of Theorems 1 and 2, and empirical evidence

demonstrating the tightness of the bound in Theorem 1, are
provided in the supplement.

4 Experiments
To consider the utility of our proposed algorithm, we look at
the estimate qualities obtained across a range of regression
and classification tasks, comparing against state-of-the-art
private and non-private algorithms. For classification, we
compare against two privatized versions of random forests
(DP-DF (Fletcher and Islam 2015) and DP-RF (Patil and
Singh 2014)), and a privatized version of extremely random
trees (DP-ERT, (Bojarski et al. 2014)). There has been little
focus on regression in the literature, limiting our comparisons
for the regression task. We modified DP-ERT to estimate the
mean, rather than counts, at each leaf. It is not straightforward
to modify DP-DF and DP-RF in this manner, however, as
their split selection mechanisms are based on the assumption
of categorical targets. We created a regression analogue of
DP-RF, in which splits are scored by mean squared error
and means were stored instead of class counts. The hyper-
parameters (NT , dmax) were chosen based on the dataset
size to avoid low-occupancy nodes; we do not optimize these
hyperparameters as this would increase the privacy cost.



4.1 Regression
We consider three datasets to benchmark our method’s re-
gression performance: the Parkinson’s telemonitoring dataset
(N = 5875) and the Appliance Energy Prediction dataset
(N = 19735) from the UCI Machine Learning Repository
(Dua and Graff 2017), and the Flight Delay dataset used by
Jagannathan, Pillaipakkamnatt, and Wright (2009). The UCI
datasets contain a mixture of categorical and numeric fea-
tures, while the Flight Delay dataset contains only numeric
features. For the purposes of computational complexity, we
sampled 800,000 data instances from the Flight Delay dataset
for this experiment. We bin the numeric features into 5 bins
for DP-RF as it requires categorical features. For each dataset,
we scaled the target variable to lie in [0, 1], took 90% of the
data as the training set and computed the mean squared error
(MSE) over the test set. The results shown in Table 1 are for
NT = 10 trees in each ensemble, with the number of covari-
ate splits to consider set to K = 10 for all but the DP-ERT.
The private methods were run for ε = 10 and ρ = 0.5. The
maximum depth was 5 for the two UCI datasets and 10 for
the Flight Delay dataset.

Parkinson’s Appliances Flight Delay

RF 2.04× 10−2 8.49× 10−3 2.11× 10−4

ERT 2.98× 10−2 9.11× 10−3 2.16× 10−4

Median 2.54× 10−2 9.28× 10−3 2.30× 10−4

DP-RF (2014) 2.65× 10−1 1.97× 10−1 1.40× 10−2

DP-ERT 3.41× 10−2 1.01× 10−2 2.34× 10−4

DiPriMe 3.10× 10−2 9.88× 10−3 2.37× 10−4

Table 1: MSEs obtained with DiPriMe, and with non-private
and private tree-based ensemble methods for regression,
NT = 10,K = 10, ε = 10, ρ = 0.5.

We see in Table 1 that DiPriMe clearly outperforms DP-
ERT as a private tree-based ensemble learner for regression,
even in datasets where the non-private median tree underper-
forms the non-private ERT algorithm. As hypothesized, we
achieve better performance in the private setting by modify-
ing our base algorithm to mitigate the impact of additional
noise, even though those modifications are not helpful in the
non-private setting: the benefit of additional robustness to
noise outweighs the utility loss due to median splits. The
effect of low-occupancy nodes is evidenced by the terrible
performance of the regression analogue of DP-RF – it consis-
tent gives an MSE at least an order of magnitude worse than
any other method.

In Figure 1, we see how performance varies with privacy
budget ε, the number of trees in the forest NT , and the maxi-
mum tree depth dmax, on the Appliances dataset. We have
omitted DP-RF from these figures as it vastly underperforms
the other methods. We see that for most parameter settings,
DiPriMe outperforms DP-ERT. Figure 1(a) illustrates the
inherent trade-off between learning deeper trees and utility.
Deeper trees give a finer approximation of the data, demon-
strated by the decreasing MSE of the non-private methods.
However, this deteriorates the utility of DiPriMe by (a) reduc-
ing the privacy budget for the split at each node (b) increasing

the sensitivity of the mean at the leaf nodes as there are likely
to be fewer data instances in deeper nodes. Increasing the
number of trees in the ensemble results in a similar trade-off,
as shown in Figure 1(b); the number of data points to learn
each tree is inversely related to the number of trees in the
ensemble. So, while more trees are expected to generally
reduce the mean squared error, each tree has less data to learn
from.

4.2 Classification
We use three datasets from the UCI Machine Learning Repos-
itory (Dua and Graff 2017)—the Banknote Authentication
(N = 1372), Credit Card Default (N = 30000) and Wall-
Following Robot Navigation (N = 5456) datasets—to com-
pare the performance of our proposed algorithm to DP-DF,
DP-RF, and DP-ERT. The Credit Card Default data contains
both numeric and categorical features, while the other two
datasets contain only numeric features. As DP-DF and DP-RF
require categorical features, we bin the numeric features into
5 bins. We chose this data-agnostic discretization procedure
to avoid leaking privacy. While alternative data-dependent
discretization algorithms have been proposed in the literature
(Patil and Singh 2014), such methods must be privatized and
hence incur additional privacy budget.

Banknote Credit Card Robot

RF 0.964 0.823 0.987
ERT 0.949 0.788 0.916

Median 0.920 0.785 0.877
DP-DF (2015) 0.551 0.785 0.595
DP-RF (2014) 0.804 0.795 0.662

DP-ERT 0.642 0.664 0.620
DiPriMe 0.935 0.785 0.788

Table 2: Comparison of DiPriMe with various non-private
and private tree-based ensemble methods for classification,
NT = 10,K = 5, dmax = 5, ε = 2, ρ = 0.5.

Table 2 shows the classification errors obtained by each
method. In the non-private setting, median forests under-
perform both extremely random trees and random forests.
However, as we introduce privacy, we see that the perfor-
mance of DiPriMe far exceeds that of DP-ERT, DP-RF and
DP-DF. This can likely be attributed to (a) DiPriMe’s capabil-
ity to directly utilize and split on numeric features without the
need for prior discretization (b) the robustness of the median
construction to privatization, due to its preference for bal-
anced node splits. As we see in Figure 2, while DiPrime has a
notable loss of accuracy compared with the non-private algo-
rithms for small values of ε, we get comparable performance
as ε increases. By contrast, DP-ERT and DP-DF continue to
underperform even as ε increases, and DP-RF requires much
larger ε to attain comparable performance.

4.3 Balancedness of splits
Our hypothesis for the superior performance of DiPriMe
is that it discourages low occupancy nodes, which in turn
reduces the impact of the injected noise on selecting optimal



(a) ε = 10, NT = 10 (b) ε = 10, dmax = 8 (c) dmax = 8, NT = 10

Figure 1: Mean squared error of DiPriMe, Random Forest, Extremely Randomized Trees and DP-ERT at various values of ε,
dmax and NT on the Appliances Energy prediction dataset.

Figure 2: Performance of DiPriMe, Random Forest, Ex-
tremely Randomized Trees, DP-ERT and DP-DF at various
values of ε for the Banknote Authentication data (dmax = 5,
NT = 10, ρ = 0.5).

splits and estimating leaf-node parameters. The claim that
DiPriMe trees discourage low-occupancy nodes is borne out
by a closer inspection of the ensembles of trees learned on
the Robot data. Figure 3 shows that DP-ERT, DP-RF and
DP-DF have very heavy-tailed distributions over the per-leaf
node occupancy, with the majority of nodes having very
low occupancy. This is exacerbated in the trees generated
by DP-RF and DP-DF, where each split generates multiple
child nodes, one for each category of the selected attribute,
compared with the binary splits used by DiPriMe and DP-
ERT: DP-DF and DP-RF generated an average of 290 nodes
and 381 nodes respectively, compared with 63 for DiPriMe
and DP-ERT. By contrast, we see that the DiPriME trees have
a much larger proportion of higher occupancy nodes.

We can explore this phenomenon by comparing splits gen-
erated by DiPriMe, with those generated by DP-ERT on the
Banknote Authentication dataset. Figure 4 shows that the
splits generated by DP-ERT have highly imbalanced occu-
pancy with high probability. By contrast, the median-based
splits used by DiPriMe tend to assign similar occupancies to
both child nodes.

Figure 3: Histogram of fraction of instances residing at each
leaf node for Robot data.

Figure 4: Fraction of instances assigned to left child, on
Banknote data.

5 Discussion

We have presented a new, differentially private, tree-based
method for regression and classification, based on random
forests with median splits. Our algorithm can easily be used
for either regression or classification, and works with both cat-
egorical and numeric covariates. Moreover, we have demon-
strated, both theoretically and empirically, that our algorithm
obtains impressive utility to competing methods, while main-
taining the same level of differential privacy.
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Appendix
We derive sensitivities used in the main paper in Section A and provide proofs for the theorems in Section B. Algorithm 3
provides additional implementation details. Section C provides some additional experimental results
We shall use the following constants in our analysis. We assume all the target values are bounded, i.e., |yi| ≤ B

A Sensitivity analysis
We assume have a set A with data points {y1, y2, . . . , yN} such that |yi| ≤ B. A|j denotes the set of all data points besides yj ,
i.e., A|j = {y1, y2, ...yj−1, yj+1, ..., yN}.
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A.2 Mean squared error
The mean squared error is equivalent to the variance. Denoting the variance by σ2,
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Using the triangle inequality repeatedly, we get
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B Proofs
B.1 Theorem 1
In a depth-d median tree, there are c = N/2d data points at the ith leaf node. W,l.o.g. let these be A = {y1, y2, . . . , yc}. Then,
the value of our objective function is

Obji =

c∑
i=1

(yi − ȳ1)2

= cσ2
A

Assuming there be a subset C ⊂ A of M − δ data points at node i with private median splits, our noisy objective value is

Obj∗i = (c− δ)σ2
C

Sensitivity of objective W.l.o.g., we take excluded points to be {y1, y2, . . . yδ}. We assume all the points are bounded, i.e.,
|yi| ≤ B.
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Returning to the utility analysis, we see that noising the median by δ leads to a maximum change of 4B2δ in the objective
value at node i.
Extending this to tree of depth d, if N∗i denotes the number of data points at the ith leaf node, then

|N∗i − c| ≤ t =⇒ |Obj∗i − Obji| ≤ 4B2t

Corollary 1.1 follows from applying the above result over all the 2d leaf nodes of a depth-d tree.

B.2 Theorem 2
We consider a depth-d tree. Let δ1 be the noise added at the first level, δ2 be the noise added at the second level, and so on. In the
noised tree, at the leaf node (depth d), we will therefore have

N∗i =
N

2d
+

n∑
j=1

δj
2d−j

, δj ∼ Laplace(0, 1/εs)

=
N

2d
+
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∆j , ∆j ∼ Laplace(0, 2j−d/εs)

data points.∑n
j=1 ∆j is unbounded, so we bound the tail probability instead, i.e., find an upper bound on P

(∑d
j=1 ∆j ≥ t

)
. We shall use

two approaches to arrive at this bound: (a) sub-exponential random variables (b) Chebyshev’s inequality.



Using sub-exponential random variables
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This implies that ∆j ∈ SE(4b2j , αi) where SE() denotes the class of sub-exponential random variables. To find αj , we need to
find the range of t for which
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where W0(x) is the principal branch of the Lambert W function. For ease of analysis, we use the lower bound on W0(x) from
(Roig-Solvas and Sznaier 2020):
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We can now bound the tail probabilities (Wainwright 2019) as
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Using Chebyshev’s inequality A simpler method of bounding the tail probabilities is to use Chebyshev’s inequality. This
gives
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Figure 5: Tail probabilities of
∣∣N∗i − N

2d

∣∣ for d = 10 are estimated from the histogram. The red line depicts the tighter of the two
bounds derived above; the blue line depicts the empirical estimate.

There is a clear dependence on 1/εs in the bounds which intuitively makes sense as the noise scales by that factor.We observe
that the derived bound on tail probablity of

∣∣N∗i − N
2d

∣∣ holds empirically from 5 with the bound becoming tighter for larger t.

Let us now use the above bound on tail probabilities to bound the effect of noising the mean of the ith leaf node. We have

Õbji = Obj∗i +N∗i ρ
2
i

where ρi ∼ Laplace(0, 2B/N∗i ε`).

The conditional expectation of the perturbation due to this noise is

E[N∗i ρ
2
i |Ñi] =

8B2

N∗i ε
2
`

Note that N∗i ≥ N/2d − t =⇒ E[N∗i ρ
2
i |N∗i ] ≤ 8B2

ε2`(N/2d−t) .

As the distribution of N∗i is symmetric about N/2d, we have E[N∗i ρ
2
i |N∗i ] ≤ 8B2

ε2`(N/2d−t) with probability 1− ζi, where

P
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Applying the union bound on the leaf nodes, and setting ζi = 21−dζ, we get
∑
i E[N∗i ρ

2
i |N∗i ] ≤ 2d+3R2

ε2`(N/2d−t) with probability
1− ζi. The result of Theorem 2 follows from combining this with that of Corollary 1.1.

C Additional results

(a) ε = 10, NT = 10 (b) ε = 10, dmax = 8 (c) dmax = 8, NT = 10

Figure 6: Mean squared error of DiPriMe without partitioning data, Random Forest, Extremely Randomized Trees and DP-ERT
at various values of ε, dmax and NT on the Appliances Energy prediction dataset.

Figure 6 displays the results for DiPriMe without paritioning the data for each tree. The trends are similar to those seen in Figure
1. An observation of note is that the optimal maximum depth for trees fit on all the data is higher than that fit on disjoint subsets



of data. This is congruent with the intuition that low-occupancy nodes are noised more heavily. Hence, trees fitted to more data
can be grown deeper before suffering from a similar loss of utility. This line of reasoning leads us to believe that learning an
ensemble of DiPriME trees on disjoint subsets of data will be a more powerful learner with larger amounts of training data. We
see a similar trend for the task of classification (see Figure 7).

Figure 7: Performance of DiPriMe without partitioning data, Random Forest, Extremely Randomized Trees, DP-ERT and DP-DF
at various values of ε for the Banknote Authentication data (dmax = 5, NT = 10, ρ = 0.5).

Figure 8 once again exhibits improved performance with larger privacy budgets. It also shows that increasing NT improves
performance only to a certain limit before the increased noise reduces the utility of the DiPriMe trees. The key insight here is the
importance of the hyperparameter ρ for good performance; large values of ρ leaves less privacy budget for storing the means,
resulting in deterioration in the MSE. This effect is more pronounced at smaller values of ε as the noise scales as 1/ε. Note that
data-driven hyperparameter selection has to be done privately as well (Liu and Talwar 2019). This would require additional
privacy budget, i.e., a larger ε.



(a) NT = 10, dmax = 8, K = 10,
data partitioned

(b) dmax = 8, ε = 10, ρ = 0.5,
data partitioned

(c) NT = 10, dmax = 8, K = 10,
data not partitioned

(d) dmax = 8, ε = 10, ρ = 0.5,
data not partitioned

Figure 8: Mean squared error of DiPriMe on the Appliances Energy Prediction dataset for various hyperparameter settings


