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Abstract

We study and optimize the differentially private learning
outcomes from data shared amongst multiple separate data-
owners according to a classical privacy versus accuracy
trade-off using a game-theoretic approach. A dynamic non-
cooperative game, with imperfect information, provides this
optimal tradeoff, with differentially private models that learn
from the data. In this model, we make an optimal choice of
privacy budget parameter from the Laplace mechanism, ac-
cording to pure differential privacy. The data analysis model
uses differentially private gradient queries, as privacy aware
supervised-machine learning. Then, we use non-cooperative
game theory to analyse and optimize the utility-leakage trade-
off to minimize learning loss achieving a unique Nash equi-
librium (mutual best response). We quantify the quality of the
trained model with a novel method to capture the trade-off
between privacy and utility (accuracy). Our novel method uses
fixed-point theory in gradient descent learning to predict the
contraction mapping of the outcomes. We validate the collabo-
rative learning method applied with our non-cooperative game
over a partitioned real financial dataset, demonstrating benefits
of sharing data for all data-owners, with significant benefits in
social welfare from applying our game.

Introduction
For the sake of enhancing efficiency and capacity of the
internet of things (IoT), edge computing allows data to be
transferred and processed at the edge of the network such
as at a cloud aggregator or end devices (Dwork and Pap-
pas 2017; Shi et al. 2016). In such networks, data analysis
methods using machine learning (ML) can unlock valuable
insights for improving revenue or quality-of-service from,
potentially proprietary, private datasets (Hunt et al. 2018;
Graepel, Lauter, and Naehrig 2012). The shared information
from the data owners in a particular IoT network can then
contribute to training ML models.

Due to the nature of learning, having large high-quality
datasets improves the quality of trained ML models in
terms of the accuracy of predictions on potentially untested
data (Dwork, Roth et al. 2014). The subsequent improve-
ments in quality motivate multiple data owners to share
and merge their datasets in order to create larger training
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datasets for federated training (Li et al. 2017; Konečnỳ et al.
2016). For instance, financial institutions may wish to merge
their transaction or lending datasets to improve the quality
of trained ML models for fraud detection or computing in-
terest rates. However, this shared information between data
owners will inevitably have sensitive data which the owners
wish to protect. As such data owners are independent of each
other, they will be concerned about their own data safety in a
collaborative learning settings.

We consider multiple learners aim to train separate privacy-
aware ML models with similar structures based on their own
datasets and differentially private (DP) responses from other
learners and private data owners as shown in Figure 1. Each
data owner trains a separate ML model and sends the differen-
tially private response to other participants for collaborative
learning. This is similar to distributed ML on arbitrary con-
nected graphs. This way, we can extend the results to more
general communication structures with the learner not neces-
sarily at the center. Note that the latter configuration where
the communication structure among the learner and the data
owners is set up as a star graph with the learner at the center
has been considered in prior research, e.g. (Wu et al. 2020;
Farokhi et al. 2020).

In this paper we first use Banach fixed point theory to get
a more accurate prediction of the learning loss (Jung 2017).
The next challenge is to significantly improve the utility-
privacy trade-off in terms of the quality of the trained ML
models; so our results of learning outcome prediction can be
used in conjunction with the cost of sharing private data of
consumers with the learner (in terms of loss of reputation, le-
gal costs, implementation of privacy-preserving mechanisms,
and communication infrastructure). To address this, we estab-
lish a game-theoretic framework for modelling interactions
across a data market. The learner can compensate the data
owners for access to their private data, by essentially paying
them for choosing larger privacy budgets(i.e.,more relaxed
privacy). After negotiations between the data owners and the
learners for setting privacy budgets, the ML models can be
trained and tradeoff between learning loss and privacy level.

Related Work. Optimization of the trade-off between pri-
vacy and utility has been discussed well in the literature
(Kalantari, Sankar, and Sarwate 2018; Brenner and Nissim
2010; Ghosh, Roughgarden, and Sundararajan 2012; Gupte
and Sundararajan 2010). In a previous paper, the problem



of optimizing utility for differential privacy using linear pro-
gramming has been solved (Bordenabe, Chatzikokolakis, and
Palamidessi 2014). In another work (Xu et al. 2015) , the
trade-off between data utility and privacy preservation is
discussed with respect to how game theory can be used to
complete this trade-off. In (Xu et al. 2015) a sequential game
model is constructed between data user and data collector
followed by backward induction reaching a subgame perfect
Nash Equilibrium. In another work, (Xu et al. 2016), the
authors focus on the idea of exchanging private information
for money or other incentives provided to the data owner by
the data collector. And then they discuss how to use game
theory to obtain an agreement between the parties involved
in this trade.

Distributed/Collaborative Privacy-Preserving Machine
Learning (ML) has been investigated in (Shokri and
Shmatikov 2015; Huang et al. 2018; Zhang, He, and Lee
2018; Zhang and Zhu 2017; Wu et al. 2020). Stochastic gradi-
ent descent is utilized in distributed ML models with additive
Gaussian/Laplace noise to ensure differential privacy. By
appropriately selecting step size in the stochastic gradient
descent, the quality of the trained ML model based on the
privacy budget can be forecast according to (Wu et al. 2020).
In a work by (Jung 2017), authors study the basic gradient
descent iterations in ML models from the contraction view
of a specific operator with a differentiable objective function.
They show how gradient descent can be accelerated in ML
models, preserving fixed-points with faster convergence, by
the contraction mapping theorem.

Contributions
In this paper, we evaluate the collaborative learning model
with DP from a fixed-point view of linear regression contrac-
tion problem. This way, we make a precise prediction of the
learning parameter in ML model. We distributedly optimize
the trade-off of utility and privacy in collaborative learning
using a non-cooperative game, with imperfect information,
between multiple data owners. More specifically, this paper
makes the following contributions:
• We build a non-cooperative game model for these learners

to optimally trade-off accuracy and privacy, according to
privacy budget and gain with minimised learning loss.

• We demonstrate a unique Nash equilibrium for this game,
providing a mutual best response in terms of the differ-
entially private shared data and its learning loss. More-
over, this unique Nash equilibrium is demonstrated to be
maintained with imperfect information with data owners
simultaneously sharing, and learning from, each others’
data.

• We use a Banach fixed-point of view on gradients re-
sponses to modify the learning algorithm and to evaluate
learning iteration speed.

• Our numerical tests built on real financial datasets, where
each learner is training for an expectation of annual loan
rate with a list of users’ data including sensitive informa-
tion, demonstrate the significant benefits of learning using
our game with differentially-private collaborative machine
learning.
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Figure 1: The communication structure between the dis-
tributed data owners (learners) for submitting queries and
providing differentially-private (DP) responses to each other.
The dashed lines are DP responses and solid lines are queries.

System Model
We assume that there are several data owners training their
own machine learning parameters with both their own dataset
and other private datasets. They send queries to each other
and respond with a randomised answer as in Figure 1.

Thus, the system setup incorporates multiple data owners
sharing data by sending a query and answering with good, but
not precise accuracy. For brevity, a data owner that trains their
model according to others responses is denoted as an analyst,
whilst when a data owner replies to a query, by adding noise
to the query, we denote that owner as an agent. Importantly,
a data owner trains its own ML model simultaneously in our
federated learning model.

In this work, we assume that an agent i perturb query’s
exact answer by adding Laplace noise with variance σ2

i : zi =
yi+ni, where ni is a zero-mean random variable with respect
to Differential Privacy. The agent sends to the analyst both
the perturbed query answer and the the variance that provides
the accuracy.

We extend the existing framework to multiple learners
aiming to train their own ML models according to each others’
separate privacy aware sub-gradient responses.

Definitions
A group of N ∈ N private agents or data owners N :=
{1, . . . , N} are connected to each other and train their own
ML model over an undirected communication graph as in
Figure 1.



Each agent has access to a set of private training data
Di := {(xi, yi)}nii=1 ⊆ X× Y ⊆ Rpx × Rpy , where xi and
yi, respectively, denote inputs and outputs.

In linear regression for training home loan datasets, each
data owner i computes its private datasets Xi, and use a
randomised privacy algorithm to perturb the answer then
replies to the query sender. Let (Di, i ∈ N ) denote the
aggregate of all the training datasets. Each data owner, for
instance, could be a private bank/financial institution. In this
case, the private datasets can represent information about
loan applicants (such as gender, age, salary, and employment
status). Categorical attributes, such as gender, can always be
translated into numerical ones according to a rule as inputs,
and historically approved interest rates per annum by the
bank are outputs.

The participants in a collaborative machine learning model
are interested in finding the relationship between explanatory
variables and real valued outcomes by using a ML model
M : R‖X‖ → R‖Y‖, where X are inputs and Y are outputs
come from the available training datasets Di, ∀i ∈ N .

The training model is to solve the optimization problem of
minimising the learning loss in

θ∗ ∈ arg min
θ∈Θ

[
g1(θ) +

1

n

∑
j∈N

∑
{x,y}∈Dj

g2(M(x; θ), y)

]
,

(1)

where g1(θ) is a regularizing term, n :=
∑
`∈N n`, and

Θ := {θ ∈ Rpθ | ‖θ‖∞ ≤ θmax}. g2(M(x; θ), y) is the
loss function which measures the distance between the ML
outcome M(x; θ) and the real output y. In a linear regression
training model, this problem can become to optimize with
g1(θ) = 0 and g2(M(x; θ), y) = ‖M(x; θ)− y‖22 which is a
Mean Squared Error(MSE) function in equation (1).

Also, in a collaborative training model with a similar struc-
ture to (Wu et al. 2020), the data owners not only train with
their local dataset but also with other learning agents’ datasets.
So the data owners send queries to each other. Q denotes the
output space of the query. In this paper, the query used is the
sub-gradient of the loss function g2(·).

Because we use a MSE function for g2 loss function, it
is a convex function of θ. In the absence of privacy con-
cerns, every data owner i trains its ML model with both the
dataset from itself and the original private dataset from neigh-
bouring data owners with unfettered access. The ML model
for data owner i can be trained by following the projected
sub-gradient descent iteration :

θi[k + 1] = ΠΘi [θi[k]− ρkξx,yg2 (θi[k])], (2)

where ρk > 0 is the step-size at iteration k, ξx,yg2 (θi[k]) =
∂θg2(M(x; θ), y) is a sub-gradient of the loss function g2(·)
with respect to the variable θ at θ[k] (Shor 2012), and ΠΘ[·]
denotes a projection operator into the set Θ defined as
ΠΘ[a] := arg minb∈Θ ‖a − b‖2 to prevent overfitting. For
continuously differentiable functions, the gradient is the only
sub-gradient.

The update law for learning iterations can be rewritten as

θ[k + 1] = ΠΘ

[
θ[k]− ρk

n

∑
`∈Nj

∑
{x,y}∈D`

ξgx,y2
(θ[k])

]
,

= ΠΘ

[
θ[k]− ρk

n

∑
`∈Nj\{j}

n`Q`(D`; k)

]
, (3)

where ξgx,y2
is a sub-gradient of gx,y2 , and Q`(D`; k) is a

query that can be submitted by the learning agent to data
owner ` ∈ N in order to provide the aggregate sub-gradient:

Q`(D`; k) =
1

n`

∑
{x,y}∈D`

ξgx,y2
(θ[k]). (4)

Responding to the query Q`(D`; k) clearly intrudes on the
privacy of the individuals in dataset D`. Therefore, data
owner ` only responds in a differentially-private manner by
reporting the noisy aggregate:

Q`(D`; k) = Q`(D`; k) + w`[k], (5)

where w`[k] is an additive noise to establish differential pri-
vacy with privacy budget ε` over the total iterations number
T .

The response of data owner is ε-differentially private over
the learning iterations T .

Definition 1 (Differential Privacy). The response policy of
data owner ` ∈ N is ε`-differentially private over the horizon
T if

P
{

(Q`(D`; k))Tk=1 ∈ Y
}
≤ exp(ε`)P

{
(Q`(D′`; k))Tk=1 ∈ Y

}
,

where Y is any Borel-measurable subset of QT (Wu et al.
2020).

Banach fixed point contraction
Now we are going to interpret gradient methods as fixed-point
iterations to analyze convergence properties and contraction
rates.

In this work, we assume collaborative learning with multi-
ple data owners who are training their own machine learning
models respectively. If there is no concern for privacy, the
trained dataset is the same for each data owner and is the
aggregate of all data (Dj , j ∈ N ). However in our case we
assume that data owners do not wish to share all dataset de-
tails, rather each learner i trains their ML model with their
own datasetDi and the sub-gradient response from other data
owners. When there is no differentially-private noise added to
the query responses, we use Dall = (Dj , j ∈ N ) to denote
the aggregate of the training datasets in the collaborative ML
model.

The object of the interest is to minimize the loss function
g2(·) in equation (1). In linear regression, we wish to predict
the output Y by a linear combination of the features:

Y ′ = θX ′.



The loss function is to minimize the following Mean Square
Error f(θ):

f(θ) = ‖θX ′ − Y ′‖22
Our linear regression model in equation (3) can be turned

into be the following iteration problem:

θi[k + 1] = θi[k]− ρk
n`

[
2

ni
(θi[k]X ′i − Y ′i )Xi (6)

+
∑

j∈N\{i}

(
2

nj
(θj [k]X ′j − Y ′j )Xj + w(j; k; εj))

]
,

Then we define this iteration problem for linear regression
model as a contraction problem from a fixed point of view
on gradient methods.

Definition 2. The operation of the fixed point iterations prob-
lem is T ρ : Rn : R : θ → T (θ)

T (θi[k + 1]) = θi[k]− ρk
n`

[
2

ni
(θi[k]X ′i − Y ′i )Xi +Qi[k]

]
(7)

where Qi[k] is the received query responses from all other
data owners at iteration k:

Qi[k] =
∑

j∈N\{i}

(
2

nj
(θj [k]X ′j − Y ′j )Xj + w(j; k; εj))

(8)

For brevity, we extract the first part in equation (8) together
with the sub-gradient of data owner i to be the sub-gradient
of the aggregation of all datasets (Di, i ∈ N ). Then D` =
(Di, i ∈ N ), X` = (Xi, i ∈ N ),Y` = (Yi, i ∈ N ).

Lemma 1. We have ∇f(θ) = 0 if and only if the vector
θ ∈ Rn is a fixed point of the operator T ρ. Thus,∇f(θ) = 0
if and only if T ρ(θ) = θ, θ` = (Y ′` −

n`−1
2 E(ε`)X

−1
` )X ′−1

` .
See proof in Appendix.

∂T (θ)

∂θ
= I⊗ I− 2ρk

n2
`

· (X>` ·X`)
> ⊗ I (9)

By properly select the value for step size ρk, ∂T (θ)
∂θ = 0 can

be reached.
A straightforward approach to finding the fixed-point of

an operator T ρ is by the fixed-point iteration

θ(k+1) = T ρθ(k).

However, because all data owners are training their own
learning model and update their learning parameter θj after
each iteration,Qi changes in each iteration. Also noise power
w(j; k; εj) from each data owner j is changing in each DP
query response.

Then, we look into the contraction rate for this fixed-point
iteration problem.

Lemma 2. Assume that for some q ∈ [0, 1), we have

‖T ρa− T ρb‖ ≤ q‖a− b‖, (10)

for any a,b ∈ Rn. Then, the operator T ρ has a unique fixed
point θ0 and the iterates θ(k) satisfy

‖θ(k) − θ0‖ ≤ qk‖θ(0) − θ0‖. (11)

The contraction rate q is as following:

q ≥ ‖I− ρni
n`
∇2f(θ)‖ (12)

See proof in Appendix.
Following equation (11) and (12), we can find the smallest

q and then get a minimum value for total ML iteration time
T .

The learning loss parameter can be predicted by using
Lemma 2, with a knowledge of previous iteration k − 1 con-
tracting parameter T ρ(θk−1) and θk−1. We thus note, that
then, when the game is played between data owners, this im-
plies imperfect information because each owner is updating
there chosen epsilon according to the last known parameter
k − 1 as opposed to the kth parameter.:

T ρ(θk) = T ρ(θk−1) + (θk − θk−1)(I− ρ∇2f(θ) (13)

− 2ρ

n`

∑
j∈N\{i}

njE(w(j; k; εj)))

= T ρ(θk−1) + (θk − θk−1)(I− 2ρ

n`
X ′`X`

− 2ρ

n`

∑
j∈N\{i}

njE(w(j; k; εj)))

Following equation (13), the learning parameter θ at next
iteration k + 1 can be predicted in iteration k, and thus the
loss function. This is related to the total number of data size
n` and the privacy budget value εj from all other data owners
j ∈ N \ {i}.

Theorem 1. The learning parameter θk+1 for next iteration
can be predicted by current and previous learning parameter
θk−1 and θk:

θk+1 = θk + (θk − θk−1)(I− 2ρ

n`
X ′`X` (14)

− 2ρ

n`

∑
j∈N\{i}

njE(w(j; k; εj)))

Corollary 1. When k is large enough and the ML models for
all players have reach a dynamic fixed point, the learning
parameter θk can be predicted as:

θk+1 = θk − (θk − θk−1)
2ρ

n`

∑
j∈N\{i}

njE(w(j; k; εj))

(15)



Algorithm 1 Non-cooperative game implementation

Require: T
Ensure: (θ[k])Tk=1

1: Initialize θ[1]
2: for k = 1, . . . , T − 1 do
3: Learner submits query Q`(D`; k) to data owners inN

4: Data owners return DP responses Q`(D`; k)
5: Learner follows the update rule

θ[k + 1] = θ[k]− ρ

T 2k

(
ξg1(θ[k]) +

∑
`∈N

n`
n
Q`(D`; k)

)
,

6: for i = 1, . . . , nplayers do
7: Learner i compute εnew,i by

εnew,i = arg min
ε

Ji(ε1, ε2, ...εnplayers)

8: end for
9: end for

Game Model
We adopt a dynamic noncooperative repeated game G =
[N , εi, Ji,τ (·)] at each time stage τ of gameplay, where n =
1, ..., N are the player/data-owners inN ; εi = [0.1, 10] is the
(pure) strategy set for the ith data owner; and Ji,τ (·) is the
cost function for data owner i . The space of action profiles
for the N players in each stage is ε = ε1 × ε2×, . . . εN .

The game G is finitely repeated T < ∞ times, with im-
perfect information. With respect to imperfect information,
all data owners send data to each other, and decisions are
made concurrently by data owner i, without the knowledge
of others’ −i decisions; this process is then repeated T times.

A data owner may be reluctant to give a less noisy response
to the analyst. However, this will in return incurs a cost for
its own training model. We model these considerations into
cost functions. The higher the variance of the perturbation
noise is, the lower the cost for privacy violation is. On the
other hand, high noise variance reduce the accuracy of the
learning model and hence incurs a higher training loss.

Each data owner i ∈ N chooses an action εi ∈ [0.1, 10] to
minimize cost

Ji(εi, ε−i) = ci(εi) + f(εi) (16)

Assumption 1. For all participants i, cost function ci(εi)
is assumed to be non-negative continuous non decreasing
function regarding to privacy budget εi.

The first component ci : R → R in the cost function is
referred as disclosure cost , which is thus non-negative contin-
uous decreasing (Zhan et al. 2020; Taghizadeh, Kebriaei, and
Niyato 2020). We use ci = a ∗ εbi , where a and b ∈ [2, 3, 4]
are scale constant value constant selected with respect to the
term f(εi). It measures how much it costs to perturb the re-
sponse. A lower noise variance, will then increase the cost.
The second component is the loss function in the learning
model. It gives the distance between the prediction and the

real value in dataset. The more accurate learning prediction
is, the lower the cost.

The second component f at time slot k represents the
Banach contraction parameter at k, hence dynamic, and is
non-negative continuous and increasing given as follows:

f(εi) =(13) T ρ(θk) (17)

= T ρ(θk−1) + (θk − θk−1)(I− 2ρ

n`
X ′`X`

− 2ρ

n`

∑
j∈N\{i}

njw(j, k, εj))

As stochastic gradient descent is utilized, we use the aver-
aging magnitude of the noise power for brevity.

w(i, k, εi) =
mi,k

n2

∑
i∈N

1

ε2i
. (18)

where mi,k is a parameter chosen according to the step size
in each iteration in learning.

That is increasing the precision (lower noise variance)
leads to a higher disclosure cost. In contrast, increasing the
accuracy helps training learning model and decrease the pre-
diction cost.

Unique Nash Equilibrium
A Nash Equilibrium is a strategy profile ε∗ satisfying

ε∗i ∈ arg minJi(εi, ε−i) (19)

for all i ∈ N .
We first observe that εi is a nonempty, convex, compact

subspace of a Euclidean space RN . At each iteration, each
has a strategy space that is continuous and defined by a mini-
mum, a maximum, and all ε in between.

Proposition 1. ε∗ is a unique Nash equilibrium with cost
functions Ji(εi, ε−i) that are continuous and strictly convex.
See proof in Appendix.

Experimental Validation
In this section, numerical tests are in two scenarios.

The first scenario is collaborative learning with privacy
concerns. In this case, there are multiple data owners training
with both their own datasets and the Sub-gradient response
which contains useful information in ML training model from
each other. Differentially private noise is added to the query
response to ensure privacy.

The second scenario is collaborative learning with privacy
concerns with game theory adjusting the magnitude of dif-
ferentially private noise. In this case, for each data owner i,
the privacy budget εi is updated in each game stage so as
to balance the utility and privacy leakage regarding to the
learning loss and privacy budget respectively.

The Home Loans dataset and the interest rates predic-
tion Application We use a lending dataset with a linear
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Figure 2: Statistic of Learning loss (MSE) versus privacy
budget ε. The solid blue line is the prediction of the learning
loss value by fixed point contraction method

Number of players 3 players 4 players 5 players
SC(with game) 1.3230 1.2060 0.5640

RMSE(with game) 2.62e2 1.70e2 83.6
Average ε 0.6433 0.5250 0.3160

SC(without game) 0.03 0.04 0.05
RMSE(without game) 1.60e3 8.26e2 4.87e2

ε for all players 0.1 0.1 0.1
SC(without game) 2.3234 2.7233 3.5824

RMSE(without game) 1.85e2 1.00e2 55.4
ε for all players 1 1 1

SC(without game) 3.3446 4.8803 4.9494
RMSE(without game) 23.33 18.42 24.02

ε for all players 10 10 10

Table 1: Social Cost (SC) and Learning Loss(RMSE) for
different players with and without game

regression model to demonstrate the value of the methodol-
ogy and to validate the theoretical results. The dataset con-
tains information regarding nearly 890,000 loans made on a
peer-to-peer lending platform, called the Lending Club. The
inputs contain loan attributes, such as total loan size, and
borrower information, such as number of credit lines, state
of residence, and age. The outputs are the interest rates of
the loans per annum. We encode categorical attributes, such
as state of residence and loan grade assigned by the Loan
Club, with integer numbers. We split this dataset into several
non-overlapping datasets for different data owners and test
datasets.

Then, we compared the learning loss between different
data owners in two different scenarios:

1. Collaborative ML training with privacy concerns,
2. Collaborative learning with privacy concerns with game

theory adjusting the magnitude of DP noise.
We use five data owners with 1000, 2783, 7743, 21545,

59949 entities for each of them. This is to make sure there
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Figure 3: Utility and cost of one data owner as a function of
the perturbation ε.

are relative large and small datasets in our data market. The
learning loss for collaborative learning with no privacy is set
as the baseline, where DP noise magnitude is set to be zero.

First, we demonstrate the performance of the learning
parameter prediction, which is shown as learning loss in
Mean Square Error (MSE), versus privacy budget value in
Figure 2. The result is stochastic because the data owners pro-
vide differentially-private responses to the gradient queries.
The prediction of the learning loss value is fitted to the real
learning outcome. Then, we test the outcome of the game
reaches equilibrium. In Figure 3, data1, data2 and data3 are
plots for payoff function, cost, and utility respectively. There
exists one minimum value for the payoff function at the end
of the game. After the game for multiple data owners with
collaborative learning is performance as desired, we invest
how game helps in choosing the best response of privacy
budget value ε for all players as in Table 1.

As shown in Figure 4, the average learning loss with ε =
10 for all data owners is the lowest. With the increase of
the DP noise magnitude, the average learning loss increases
non-linearly. The Equilibrium result between the learning
loss and privacy budget ε is shown in red plots in this figure.
The average learning loss is close to the case when privacy
budget ε = 1. There is a significant improvement in privacy,
which is about 47.5%.

Social Welfare
Then we evaluate the social welfare for all players at the end
of the game. We pick three cases with 3, 4, and 5 players for
validation. We define the social cost per player :

SC =
1

N
∑
i∈N

Ji(εi,k=T ).

As shown in Figure 5, the social cost for collaborative
learning with game is lower in the case when ε = 1 with any
number of players. The outcome of the game shows that the



Figure 4: Learning loss (RMSE) versus privacy budget ε for
3, 4, and 5 data owners in collaborative learning with and
without game

learning loss and privacy budget not only reaches a balance at
the equilibrium but also minimises the social cost per player.
The social cost without game is higher than with game for all
cases other than for ε = 0.1. This is due to the DP noise at
ε = 0.1 is way too large and the learning loss value for all
players are equivalent high. Thus, social welfare is preserved
as desired.

Conclusion
In this paper, we interpreted gradient methods as fixed-point
iterations, and used the concept of Banach contraction to
make a prediction of training loss among a privacy concerned
collaborative machine learning model. Then, we constructed
a game based on linear regression. Our analysis of the Nash
equilibrium assumed complete information, that is that agents
know the costs and features of other agents. Our model also
assumed that the private budget chosen by each player is
known by each other player. We established the existence of
a unique Nash Equilibrium for the game, which also gave
good social welfare across data owners.
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Proof of Lemma 1
We have ∇f(θ) = 0 if and only if the vector θ ∈ Rn is a
fixed point of the operator T ρ. Thus, ∇f(θ) = 0 if and only
if T ρ(θ) = θ, θi = (Y ′i − 1

2QiX
−1
i )X ′−1

i .

Proof. Let θ be a fixed point of T ρ, i.e.,

T ρ(θ) = θ. (20)

Then,

T ρ(θ)− θ = 0, (21)

ρ

n`

[
2(θiX

′
i − Y ′i )Xi +Qi

]
= 0,

(Y ′i − θiX ′i)Xi =
1

2
Qi,

Y ′i − θiX ′i =
1

2
QiX

−1
i ,

θiX
′
i = Y ′i −

1

2
QiX

−1
i ,

θi = (Y ′i −
1

2
QiX

−1
i )X ′−1

i .

As Qi is different in each iteration k, such fixed point is
then dynamic regarding to the received responses from all
other data owners. In stead, the expectation of the fixed point
is calculated with regard to the aggregation of all datasets
D` = (Di, i ∈ N ), X` = (Xi, i ∈ N ),Y` = (Yi, i ∈ N ),
and a expectation value of DP noise E(ε`) from each data
owner.

Proof.

T ρ(θ)− θ = 0, (22)

ρ

n`

[
2(θX ′` − Y ′` )Xi + (n` − 1)E(ε`)

]
= 0,

(Y ′` − θX ′`)Xi =
n` − 1

2
E(ε`),

Y ′` − θX ′` =
n` − 1

2
E(ε`)X

−1
` ,

θX ′` = Y ′` −
n` − 1

2
E(ε`)X

−1
` ,

θ = (Y ′` −
n` − 1

2
E(ε`)X

−1
` )X ′−1

` .

Proof of Lemma 2
Assume that for some q ∈ [0, 1), we have

‖T ρa− T ρb‖ ≤ q‖a− b‖, (23)

for any a,b ∈ Rn. Then, the operator T ρ has a unique fixed
point θ0 and the iterates θ(k) satisfy

‖θ(k) − θ0‖ ≤ qk‖θ(0) − θ0‖. (24)

Proof. Conversely, we assume there are two different fixed
points, such that

a = T ρ(a),b = T ρ(b).

‖T ρ(a)− T ρ(b)‖ = ‖a− b‖
Then, by (23),

‖a− b‖ ≤ q‖a− b‖
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So, q ≥ 1 or ‖a− b‖ = 0.
However, since q ∈ [0, 1), we must have a = b. Thus,

there is only one fixed point exists.

T ρ(a)− T ρ(b) = (a− b)− ρ

n`

[
(ni∇f(a) +Qa) (25)

− (ni∇f(b) +Qb)

]
= (a− b)− ρni

n`
(∇f(a)−∇f(b))

− ρ

n`
(Qa −Qb)

Because ∇f(.) is a continuous and differentiable function.
So there exist a point m = ca+(1− c)b, c ∈ [0, 1] such that

T ρ(a)− T ρ(b) = (a− b)− ρni
n`

[(a− b)∇2f(m) (26)

+ 2E(ε`)]−
ρ

n`
(Qa −Qb)

= (a− b)(I − ρni
n`
∇2f(m))− 2

ρni
n`

E(ε`)

− ρ

n`
(Qa −Qb)

Assume Qa = Qb, so

T ρ(a)− T ρ(b) = (a− b)(I − ρni
n`
∇2f(m)) (27)

− 2
ρni
n`

E(ε`)

‖(a− b)(I − ρni
n`
∇2f(m))‖ ≤ q‖a− b‖ (28)

q ≥ ‖I− ρni
n`
∇2f(m)‖

Proof.

E(ε`) =E
{∥∥∥∥( 1∑

`∈N n`

)∑
`∈N

n`w`[k]

∥∥∥∥2

2

}
(29)

=

(
1∑

`∈N n`

)2 ∑
`∈N

n2
`E{‖w`[k]‖22}

=

(
1∑

`∈N n`

)2 ∑
`∈N

8Ξ2T 2

ε2`

=
8Ξ2T 2

n2

∑
`∈N

1

ε2`
.

Proof of Proposition 1
Proof.

∇J(ε) = ∇(c) +∇f(ε) (30)

∇J(ε = 0) ∝
∂E(ε`)

∂ε
(31)

= −m
n2

∑
i∈N

2

ε3i
.

∇2J(ε = 0) ∝
∂2E(ε`)

∂ε2
(32)

=
m

n2

∑
i∈N

6

ε4i
.

∇J(ε = 0) < 0 and ∇2J(ε = 0) > 0
So this cost function ∇J(ε) is strictly convex with respect

to action ε. This concludes the proof.
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