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Abstract
It has been shown that for differentially private query re-
lease, the MWEM algorithm due to Hardt, Ligett, and Mc-
Sherry (2012) achieves nearly optimal statistical guarantees.
However, running MWEM on high-dimensional data is of-
ten infeasible, making the algorithm only applicable to low-
dimensional data. In this paper, we study the setting in which
the data curator has access to public data that is drawn from
a similar—but related—distribution. Specifically, we present
MW-Pub, which adapts MWEM to leverage prior knowledge
from public samples and scale to high-dimensional data. Em-
pirical evaluation on the American Community Survey (ACS)
and the ADULT dataset shows that our method outperforms
state-of-the-art methods under high privacy regimes.

1 Introduction
Access to individual-level data has become crucial to many
decision making processes as they grow increasingly more
data-driven. However, as the collection and distribution of
private information becomes more prevalent, controlling for
privacy has become a priority for organizations releasing
statistics about different populations. Today, differential pri-
vacy (Dwork 2006) is the standard by which researchers
measure the tradeoff between releasing useful information
and protecting privacy, serving as the basis for many appli-
cations of privacy protection, including the 2020 U.S. Cen-
sus release (Abowd 2018).

In this paper, we study statistical query release, an ap-
plication used by many organizations, such as government
agencies and medical institutions, and one of the fundamen-
tal problems in privacy research. One notable framework
for private query release is to directly release private syn-
thetic data, a sanitized version of the private dataset that an-
swers queries under some privacy guarantees. Private multi-
plicative weights (Hardt and Rothblum 2010) and MWEM
(Hardt, Ligett, and McSherry 2012) are two notable ex-
amples of synthetic data algorithms, with the latter having
been shown to provide nearly optimal guarantees. However,
running MWEM requires maintaining a distribution over
the domain of the data universe, which often becomes in-
tractable for real-world problems and has prompted devel-
opment of new algorithms that avoid this issue while fol-
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lowing similar no-regret learning dynamics (Gaboardi et al.
2014; Vietri et al. 2020). In a similar vein, our proposed
method, MW-Pub, adapts MWEM to make use of public
data, which we define as any samples that pose no privacy
concerns. In doing so, MW-Pub not only scales better to
higher-dimensional datasets but also achieves lower error
by leveraging prior information from the auxiliary public
dataset.

Related Work. To motivate the setting of assisting privacy
mechanisms with public data, we note that sources of public
data are often readily available, such as in the case where in-
dividuals voluntarily offer or sell their data. Following this
observation, many works have also studied utilizing public
data for differential privacy. Avent et al. (2017) for example
propose a hybrid search model that combines sensitive pri-
vate data with public data. Bassily et al. (2020) prove upper
and lower bounds for private and public sample complexi-
ties in the context of private query release. Similarly, Alon,
Bassily, and Moran (2019) prove private and public sample
complexities for semi-private learning (Beimel, Nissim, and
Stemmer 2013), a relaxed notion of differentially private su-
pervised learning in which the training set can be divided
into private and public samples. Bassily, Moran, and Nandi
(2020) extend this line of research, studying PAC learnabil-
ity while relaxing the assumption that public and private
samples come from the same distribution.

2 Preliminaries
In order to present our problem statement, we begin by
defining the following:

Definition 2.1 (Statistical linear query). Given as predicate
a linear threshold function φ and a dataset D, the linear
query qφ : Xn → [0, 1] is defined by

qφ(D) =
1

|D|
∑
x∈D

φ(x)

Defining a dataset instead as a distribution A over the do-
main X , the definition for a linear query qφ then becomes

qφ(A) =
∑
x∈X

q(x)A(x)



Definition 2.2 (k-way marginal query). Let the data uni-
verse with d categorical attributes be X = (X1 × . . .×Xd),
where each Xi is the discrete domain of the ith attribute.
A k-way marginal query is a linear query specified by at-
tributes M = {(ai)i∈[k] | a1 6= . . . 6= ak ∈ [d]} and target
y ∈ (X1 × . . .×Xk), given by

qM,y(x) =

{
1 : xa1 = y1 ∧ . . . ∧ xak = yk
0 : otherwise

where xi ∈ Xi means the ith attribute of record x ∈ X . Each
marginal has a total of

∏k
i=1 |Xak | queries, and we define a

workload as a set of marginal queries.

Definition 2.3 (Differential Privacy (Dwork 2006)). A ran-
domized algorithmM : X ∗ → R satisfies (ε, δ)-differential
privacy (DP) if for all databases x, x′ differing at most one
entry and every measurable subset S ⊆ R, we have that

Pr[M(x) ∈ S] ≤ eεPr [M (x′) ∈ S] + δ

If δ = 0, we say thatM satisfies ε-differential privacy.

Definition 2.4 (Concentrated Differential Privacy (Bun and
Steinke 2016)). A randomized mechanism M : Xn → R is
ρ-zCDP, if for all neighboring datasets D,D′, differing on a
single element and for all α ∈ (1,∞),

Dα(M(D) ‖ M(D′)) ≤ ρα
where Dα((D) ‖ (D′)) is the Rényi divergence between the
distribution of (D) and the distribution of (D′).

Problem Statement. We consider a data domain X =
{0, 1}d of dimension d and a private dataset D̃ ∈ Xn con-
sisting of the data of n individuals. Our goal is to approxi-
mately answer a large class of statistical queriesQ about D̃.
An approximate answer a ∈ [0, 1] to some query qφ ∈ Q
must satisfy |a − qφ(D̃)| ≤ α for some accuracy parameter
α > 0.

In this work, we assume access to a public dataset D̂ ∈
Xm with m individuals. This dataset defines a public data
domain, denoted by X̂ ⊂ X , which consists of all unique
rows in D̂. Note that one can think of the dataset D̂ as a
distribution over the domain X̂ .

3 Public Data Assisted MWEM
In this section, we revisit the MWEM algorithm and then in-
troduce MW-Pub, which adapts MWEM to take advantage
of public data.

3.1 MWEM
MWEM (Hardt, Ligett, and McSherry 2012) is an approach
to answering linear queries that combines the multiplicative
weights update rule (Hardt and Rothblum 2010) and the ex-
ponential mechanism (McSherry and Talwar 2007). MWEM
maintains an approximation of the distribution over the data
domain X . At each iteration, the algorithm selects the worst
approximate query qt(D̃) using the exponential mechanism
and measures the query with Laplace noise (Dwork et al.

2006). MWEM then improves the approximating distribu-
tion using the multiplicative weights update rule. This algo-
rithm can thus be viewed as a two-player game in which a
data player updates its distribution At using a no-regret on-
line learning algorithm and a query player responds using
the exponential mechanism.

Although Hardt, Ligett, and McSherry (2012) show that
MWEM achieves nearly optimal theoretical guarantees and
performs well empirically across a variety of query classes
and datasets, applying MWEM in real-world instances can
often be impractical. Maintaining a distribution A over a
data domain X = {0, 1}d becomes infeasible when d is
large, suffering running time that is exponential in d. Hardt,
Ligett, and McSherry (2012) introduce a scalable implemen-
tation of MWEM that avoids explicitly tracking A when the
query class involves disjoint subsets of attributes. However,
while MWEM has running time proportional to |X | in this
special case, it is applicable only to simpler workloads.

3.2 MWEM+PUB

We introduce MW-Pub in Algorithm 1, which adapts
MWEM to use a public dataset through the following
changes:

The approximating distribution At is maintained over
the public data domain X̂ rather than X . Because |X̂ |
is often significantly smaller than |X |, MW-Pub offers sub-
stantial improvements in both its running time and memory
footprint, allowing it to scale to much more complex query
release problems.
A0 is initialized to the distribution over X̂ given by D̂. In
the standard formulation of MWEM, A0 is initialized to be
a uniform distribution over X . However, Hardt, Ligett, and
McSherry (2012) note that in certain cases, it can be benefi-
cial to instead initializeA0 by performing a noisy count over
all rows x ∈ X . Drawing inspiration from this variation, we
instead initialize A0 to match the distribution of D̂ under
the assumption that A0 provides a better approximation of
the distribution of D̃ than a uniform distribution over X̂ .

In addition, we make the following modifications to both
MWEM and MW-Pub:

Permute-and-flip Mechanism. We replace the expo-
nential mechanism with the permute-and-flip mechanism
(McKenna and Sheldon 2020), which like the exponential
mechanism runs in linear time but whose expected error is
never higher.
Gaussian Mechanism. When taking measurements of sam-
pled queries, we add Gaussian noise instead of Laplace
noise. The Gaussian distribution has lighter tails, and in set-
tings with a high degree of composition, the scale of Gaus-
sian noise required to achieve some fixed privacy guaran-
tee is lower (Canonne, Kamath, and Steinke 2020). Privacy
guarantees for the Gaussian mechanism can be cleanly ex-
pressed in terms of concentrated differential privacy and the
composition theorem given by Bun and Steinke (2016).



Algorithm 1: MW-Pub

Input: Private dataset D̃ ∈ Xn, public dataset D̂ ∈ Xm,
query class Q, privacy parameter ε̃, number of iterations
T .
Let the domain be X̂ = supp(D̂).
Let size of the private dataset be n = |D̃|.
Let A0 be the distribution over X̂ given by D̂
Initialize ε0 = ε̃√

2T
.

for t = 1 to T do
Sample query qt ∈ Q using the permute-and-flip
mechanism – i.e.,

Pr[qt] ∝ exp
(ε0n

2
|q(At−1)− q(D̃)|

)
Measure: Let at = qt(D̃) +N

(
0, 1/n2ε20

)
. (But, if

at < 0, set at = 0; if at > 1, set at = 1.)
Update: Let At be a distribution over X̂ s.t.

At(x) ∝ At−1(x) exp (qt(x) (at − qt(At−1)) /2).

end for
Output: A = avgt≤TAt

3.3 Privacy Analysis.
When run with privacy parameter ε̃, MW-Pub satisfies
1
2 ε̃

2-concentrated differential privacy and, for all δ >
0, it satisfies(ε(δ), δ)-differential privacy, where ε(δ) =

infα>1
1
2 ε̃

2α + log(1/αδ)
α−1 + log(1 − 1/α) ≤ 1

2 ε̃
2 +√

2 log(1/δ) · ε̃.
The privacy analysis follows from four facts: (i) Permute-

and-flip satisfies ε0-differential privacy (McKenna and Shel-
don 2020), which implies 1

2ε
2
0-concentrated differential

privacy. (ii) The Gaussian noise addition also satisfies
1
2ε

2
0-concentrated differential privacy. (iii) The composition

property of concentrated differential privacy allows us to add
up these 2T parameters (Bun and Steinke 2016). (iv) Finally,
we can convert the concentrated differential privacy guaran-
tee into the usual approximate differential privacy (Canonne,
Kamath, and Steinke 2020).

4 Experimental Setting
We describe the datasets and benchmarks used to evaluate
MW-Pub in our experiments.

4.1 Data
American Community Survey (ACS) We evaluate all al-
gorithms on the 2018 American Community Survey (ACS)
1-year estimates, obtained from the IPUMS USA database
(Ruggles et al. 2020). Collected every year by the US Cen-
sus Bureau, the ACS provides statistics meant to capture
the social and economic conditions of households across the
United States. Given that the Census Bureau is incorporating
differential privacy into 2020 Census release (Abowd 2018)
and has plans to incorporate it into the ACS itself after 2025,

we believe that the ACS dataset is a natural testbed for pri-
vately answering statistical queries in a real-world setting.

For our private dataset D̃, we use the 2018 ACS for the
state of Pennsylvania (PA-18). In addition, we use the 2014
ACS as a validation set for selecting hyperparameters. To
select our public dataset D̂, we explore the following:

Selecting across time. We consider the setting in which
there exists a public dataset describing our population at a
different point in time. Given that privacy laws and practices
are still expanding, it is often feasible to identify datasets
that were released publicly in the past. Using the 2020 U.S.
Census release as an example, one could consider using the
2010 U.S. Census as a public dataset for some differentially
private mechanism. For our experiments, we use the 2010
ACS data for Pennsylvania (PA-10) when evaluating on both
the validation (PA-14) and test (PA-18) sets.

Selecting across states. Next, we consider the setting in
which there exists a public dataset collected concurrently
from a different population. In the context of releasing state-
level statistics, one can imagine for example that some states
have differing privacy laws. In this case, we can identify
some dataset for a similar state that has been publicly re-
leased. For our experiments, we use 2018 ACS data for Ohio
(OH-18), Illinois (IL-18), New York (NY-18), and New Jer-
sey (NJ-18) to evaluate performance on PA-18. We use the
same states’ data from 2014 (i.e. OH-14, IL-14, NY-14, NJ-
14) to evaluate on the validation set.

ADULT We evaluate algorithms on the ADULT dataset
from the UCI machine learning dataset repository (Dua and
Graff 2017). We construct private and public datasets by
sampling with replacement rows from ADULT of size 0.9N
and 0.1N respectively (where N is the number of rows in
ADULT). Thus, we frame rows in the ADULT dataset as in-
dividuals from some population in which there exists both a
public and private dataset trying to characterize it (with the
former being significantly smaller).

4.2 Benchmarks
In addition to MWEM, we evaluate MW-Pub against the
following:

DUALQUERY. Similar to MWEM, DualQuery
(Gaboardi et al. 2014) frames query release as a two-
player game by reversing the roles of the data and query
players. In DualQuery, the query player runs multiplicative
weights to update its distribution over queries while the
data player outputs a data record as its best response. At
each round, the algorithm preserves privacy guarantees
by drawing samples from the query distribution using the
exponential mechanism. Gaboardi et al. (2014) prove theo-
retical accuracy bounds for DualQuery that are worse than
that of MWEM and show that on low-dimensional datasets
where running MWEM is feasible, MWEM outperforms
DualQuery. However, DualQuery solves an optimization
problem whose space and running time are linear in the
number of queries being answered, and given that the
number of queries is often significantly smaller than the
size of the data universe for high-dimensional datasets,



DualQuery has the advantage of being scalable to a wider
range of query release problems.

HDMM. Unlike MWEM and DualQuery, which solve
the query release problem by generating synthetic data,
the High-Dimensional Matrix Mechanism (McKenna et al.
2018) is designed to directly answer a workload of queries.
By representing query workloads compactly, HDMM selects
a new set of ”strategy” queries that minimize the estimated
error with respect to the input workload. The algorithm then
answers the ”strategy” queries using the Laplace mechanism
and reconstructs the answers to the input workload queries
using these noisy measurements, solving a ordinary least
squares problem to resolve any inconsistencies. With the
U.S. Census Bureau deploying HDMM (Kifer 2019), the al-
gorithm offers a particularly suitable baseline for privately
answering statistical queries on the ACS dataset.

4.3 Additional Optimizations
Following a remark made by Hardt, Ligett, and McSherry
(2012) for optimizing the empirical performance of MWEM,
we apply the multiplicative weights update rule using sam-
pled queries qi and measurements ai from previous iter-
ations i. However, rather than use all past measurements,
we choose queries with estimated error above some thresh-
old. Specifically at each iteration t, we calculate the term
ci = |qi(At) − ai| for i ≤ t. In random order, we apply
multiplicative weights for all queries and measurements, in-
dexed by i, such that ci ≥ ct

2 , i.e. queries whose noisy error
estimates are relatively high.

5 Results
In this section, we present our results on the ACS and
ADULT datasets, comparing MW-Pub to the benchmark
algorithms. Across all experiments, we report the maxi-
mum error on a set of statistical queries. Our experiments
entail answering a random set of 3 or 5-way marginal
queries with varying workload sizes ranging from 512 to
4096. We test performance on privacy budgets ε(δ) ∈
{0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

N2 , where N is the
size of the private dataset.

In all figures, we plot the average of 5 runs at each privacy
budget ε and use error bars to represent one standard error.
For MW-Pub, we select hyperparameters using the valida-
tion set (PA-14). For MWEM and DualQuery, we simply
report the best performing 5-run average across all hyper-
parameter choices. Running HDMM does not require hyper-
parameter selection. For a complete list of hyperparameters,
refer to Appendix 7.2

5.1 ACS (Pennsylvania)
We compare the performance of MW-Pub using the pub-
lic datasets described in section 4.1. As seen in Figure 2,
the ACS data for New Jersey is a poor candidate for a pub-
lic dataset, despite being a bordering state of Pennsylvania.
The maximum error of using the NJ ACS dataset to di-
rectly answer queries (ε = 0) is quite high. Moreover, the
performance of MW-Pub does not improve, indicating that

Figure 1: [2018 ACS-PA] Max error on 3-way marginals
across privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1}
where δ = 1

N2 and the workload size is 4096. Top: We
compare MW-Pub to the benchmark algorithms. Bottom:
We evaluate the max error when using the public datasets to
answer queries directly (ε = 0).

the support X̂ is insufficient for improving the approximat-
ing distribution At any further. On the other hand, we ob-
serve that when using our other choices for public datasets,
MW-Pub performs much better, with the algorithm converg-
ing to approximately the same error as ε approaches 1.0.

Next, we compare MW-Pub using the best performing
public datasets selected across time (PA-10) and across
states (OH-18) to the benchmark algorithms described in
section 4.2. We present the following observations:

MW-Pub outperforms all benchmark algorithms. In
the high privacy regime in which ε is small, the bench-
mark algorithms have high maximum errors. For example,
Figure 1 shows that for ε < 0.25, it is better to directly
answer queries using the 2010 ACS data for Pennsylvania,
rather than use DualQuery or HDMM. Running MW-Pub
improves upon the initial error of using the public datasets,
outperforming the benchmark algorithms across all privacy
budgets that we evaluated on.



Public Dataset Initial Error

PA (2010) 0.0967
OH (2018) 0.1370
IL (2018) 0.1669
NY (2018) 0.3002
NJ (2018) 0.3389

Figure 2: [2018 ACS-PA] Max error on 3-way marginals
at a workload size of 4096. Top: Comparison of max er-
rors for ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ = 1

N2 us-
ing different public datasets. Note that MW-Pub performs
similarly across all the public datasets except NJ-18 (dashed
line). Bottom: Table comparing the initial error of each pub-
lic dataset (ε = 0).

MW-Pub performs well even when the public dataset
is reduced to 1% of its original size. In Figure 3, we
plot the performance of MW-Pub using different public
dataset sizes. Reducing the 2010 ACS-PA and 2018 ACS-
OH datasets to only 1% of their original sizes yields no sig-
nificant performance loss, with MW-Pub still outperform-
ing all benchmarks. However, further decreasing the pub-
lic dataset size dramatically increases the error. We attribute
this increase to (1) X̂ provides an insufficient support and
(2) reducing D̂ induces too much sampling error to make our
initialization for A0 strong enough to outperform HDMM.

Compared to HDMM, MW-Pub scales well with re-
spect to workload size. We compare the performance of
MW-Pub and HDMM, our strongest performing benchmark,
across different workload sizes. Figure 4 shows that al-
though the maximum error of HDMM grows significantly as
we increase the number of 3-way marginal queries, the max-
imum error of MW-Pub remains relatively stable. Our ex-
periments suggest that, MW-Pub may be a more suitable al-
gorithm when the goal is release large workloads of queries.

5.2 ADULT
We compare MW-Pub against the benchmark algorithms
on ADULT in which we construct public and private par-
titions from the original dataset. We evaluate on 3-way
marginal queries with the maximum workload size of 286.
Because both the public and private partitions come from
the same distribution, the public partition itself already ap-

Figure 3: [2018 ACS-PA] Max error on 3-way marginals
while varying the fraction of the public dataset used, where
ε ∈ {0.1, 0.25, 0.5, 1}, δ = 1

N2 , and workload size is 4096.

Figure 4: [2018 ACS-PA] Comparison of MW-Pub against
HDMM on 3-way marginals while varying the workload
size. (δ = 1

N2 ).

proximates the distribution of the private partition well. Con-
sequently, we conduct additional experiments by sampling
from ADULT according to the attribute sex with some bias.
Specifically, we sample females with probability r + ∆
where r ≈ 0.33 is the proportion of females in the ADULT
dataset. We observe in Figure 5 that an unbiased sample
for the public partition (∆ = 0) achieves very low error
across all privacy budgets. In addition, even when we take
biased samples where ∆ ∈ {−0.05,−0.1}, MW-Pub per-
forms well. However, in the case where the public dataset is
extremely biased and is comprised almost entirely of males
(∆ = −0.3), the performance of MW-Pub deteriorates, with
HDMM outperforming it at ε = 1.



Figure 5: [ADULT] Max error on 3-way marginals across
privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} where δ =
1
N2 and the workload size is 286 (maximum). Each public
dataset is constructed by sampling from a public partition
with some bias ∆ over the attribute sex (labeled as MW-Pub
(∆)), i.e. rows with the attribute sex=’Female’ are sampled
with probability r+∆ where r ≈ 0.33 is the true proportion
of females in the ADULT dataset.

Figure 6: [2018 ACS (reduced)-PA] Max error on 5-way
marginals with the maximum workload size (3003) across
privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} and δ =
1
N2 .

5.3 Ablation studies
To understand how MW-Pub improves upon MWEM, we
run additional experiments that compare the two algorithms.
Note that because of the drawbacks described in section
2, running MWEM requires data domains that are reason-
ably small. As a result, we run these experiments on a re-
duced version the ACS dataset, which we denote as ACS
(reduced), by selecting attributes that take on fewer values.
Given that the total number of binary attributes is signifi-
cantly decreased, we are able to run all experiments with
5-way marginals at the maximum workload size of 3003.

For our public datasets, we use PA-10, OH-18, and

Figure 7: [2018 ACS (reduced)-PA] Max er-
ror on 5-way marginals across privacy budgets
ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1} where δ = 1

N2 and
workload size is 3003 (maximum). We run MWEM while
maintaining a distribution over the domains of our public
datasets D̂ ∈ {PA-10,OH-18,NJ-18} (labeled as MWEM
(D̂)) rather than the entire universe. In addition, we sam-
ple C rows from the data domain and run MWEM with
C ∈ {5K, 10K, 25K} (labeled as MWEM (C)).

NJ-18 and present results in Figure 6. When compared
to DualQuery, HDMM, and MWEM, the performance of
MW-Pub on ACS (reduced) is similar to experiments us-
ing the full ACS data, with MW-Pub outperforming all
three benchmarks. We note however that for 5-way marginal
queries on this reduced set of attributes, using NJ-18 as a
public dataset also outperforms HDMM, which was not true
in our previous set of experiments. In addition we observe
that MWEM outperforms HDMM and DualQuery, further
supporting that MWEM can achieve strong performance in
cases where it is feasible to run the algorithm.

Next recall from section 3 that that MW-Pub makes two
modifications to MWEM: (1) MW-Pub maintains a distri-
bution over the public domain rather than the entire data
domain, and (2) MW-Pub initializes its approximating dis-
tribution to the distribution of the public dataset. To under-
stand how each modification impacts the performance of our
algorithm, we evaluate MW-Pub against MWEM and sum-
marize our experiments and analysis as the following:

(1) To evaluate the impact of maintaining a distribution
over the public data domain, we run MW-Pub using only
this first modification with public datasets PA-10, OH-18,
and NJ-18. In other words, we run MWEM over a reduced
support. As a separate baseline, we also run MWEM using
supports of varying sizes sampled uniformly from the data
domain. We present the performance of these algorithms
in Figure 7 alongside the performance of our benchmark
algorithms. The support size of our three public datasets
are each approximately 2.5K, which is significantly smaller
than that of the data domain, which is approximately 100K.
However, we observe that running MWEM over these pub-
lic data domains yields nearly identical performance to run-
ning MWEM over the entire data domain. On the other hand,
when using a random sample of the data domain at roughly
2x, 4x, and 10x the size of our public data domains, MWEM



Figure 8: [2018 ACS (reduced)-PA] Relative decrease in
max error (higher is better) of MW-Pub vs. MWEM ini-
tialized with a uniform distribution over the public data do-
main. For example, a relative decrease of 2.5 means that
the max error of MW-Pub is 2.5x lower. Experiments are
run across privacy budgets ε ∈ {0.1, 0.15, 0.2, 0.25, 0.5, 1}
where δ = 1

N2 . We evaluate over 5-way marginal queries at
the maximum workload size of 3003.

performs very poorly. Therefore, we conclude that for this
set of attributes and queries, our public datasets offer suffi-
cient supports with significantly reduced dimensionality.

(2) We evaluate how the initialization of A0 in MW-Pub
affects performance by comparing it to a variant of MW-Pub
that does not incorporate this modification. In other words,
we again run MWEM where A0 is initialized to to a uni-
form distribution over the public data domain. We observe
in Figure 8 that initializing to the distribution of the public
dataset rather than a uniform distribution significantly im-
proves performance across all privacy budgets, decreasing
the max error by a factor of approximately 2 to 3.

6 Conclusion and Future Work
In this paper, we introduced MW-Pub, an extension to
MWEM that leverages prior knowledge from public data
and dramatically reduces its running time and memory re-
quirements. We empirically evaluate our method on the 2018
ACS dataset for Pennsylvania and show that there exists a
number of choices for public datasets that allow MW-Pub
to outperform state-of-the-art benchmark algorithms. In ad-
dition, we run experiments on ADULT and a reduced ver-
sion of the ACS dataset to better understand our proposed
algorithm. For future work, we hope to formally characterize
how properties of the public dataset affect the final accuracy
of MW-Pub.

7 Appendix
7.1 Data
Attributes for our experiments on ACS, ACS (reduced), and
ADULT:

• ACS: ACREHOUS, AGE, AVAILBLE, CITIZEN,
CLASSWKR, DIFFCARE, DIFFEYE, DIFFHEAR,
DIFFMOB, DIFFPHYS, DIFFREM, DIFFSENS, DI-
VINYR, EDUC, EMPSTAT, FERTYR, FOODSTMP,
GRADEATT, HCOVANY, HCOVPRIV, HINSCAID,
HINSCARE, HINSVA, HISPAN, LABFORCE, LOOK-
ING, MARRINYR, MARRNO, MARST, METRO,
MIGRATE1, MIGTYPE1, MORTGAGE, MULT-
GEN, NCHILD, NCHLT5, NCOUPLES, NFATHERS,
NMOTHERS, NSIBS, OWNERSHP, RACAMIND,
RACASIAN, RACBLK, RACE, RACOTHER,
RACPACIS, RACWHT, RELATE, SCHLTYPE,
SCHOOL, SEX, SPEAKENG, VACANCY, VEHICLES,
VET01LTR, VET47X50, VET55X64, VET75X90,
VET90X01, VETDISAB, VETKOREA, VETSTAT,
VETVIETN, VETWWII, WIDINYR, WORKEDYR

• ACS (reduced): DIFFEYE, DIFFHEAR, EMPSTAT,
FOODSTMP, HCOVPRIV, HINSCAID, HINSCARE,
OWNERSHP, RACAMIND, RACASIAN, RACBLK,
RACOTHER, RACPACIS, RACWHT, SEX

• ADULT: sex, income>50K, race, relationship, marital-
status, workclass, occupation, education-num, native-
country, capital-gain, capital-loss, hours-per-week, age

In addition, we discretize the following continuous variables
into various bins sizes:

• ACS: AGE

• ACS (reduced): AGE

• ADULT: capital-gain, capital-loss, hours-per-week, age

7.2 Hyperparameters
We report hyperparameters used across all experiments in
Table 1.

Table 1: Hyperparameter selection for experiments on all
datasets.

Method Parameter Values

MW-Pub T
300, 250, 200, 150,

25, 100, 75, 50,
25, 10, 5

MWEM T
300, 250, 200, 150,

25, 100, 75, 50,
25, 10, 5

DualQuery samples 500 250 100 50
η 5 4 3 2
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