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Abstract
In order to personalize user experiences and improve the
reach of advertisers, online companies increasingly rely on
powerful predictive models to infer user attributes and pref-
erences. Meanwhile, some of these attributes may be of sen-
sitive nature and users have little say in keeping such pre-
dicted attribute values as private. Here, we propose a per-
sonalized adversarial approach which can empower users to
change parts of their online profile in a way that makes it
harder for companies to predict their private information.
Our work is tailored to state-of-the-art graph convolutional
networks which are increasingly used for attribute predic-
tion in graphs. We mitigate their predictive power by help-
ing users decide which relationships and non-sensitive per-
sonal attributes they need to change, in order to protect their
privacy. Unlike existing adversarial approaches, we consider
two constraints that correspond to realistic real-world scenar-
ios: 1) a user has control over changing their own attributes
only and no collusion between users can occur, 2) a user is
willing to change only certain attributes and relationships but
not others. Our approach achieves a much better user privacy
protection when compared to state-of-the-art adversarial al-
gorithms for graphs.

Introduction
User-generated content on social media has led to increased
interest in mining actionable patterns from user data (Za-
farani, Abbasi, and Liu 2014). This content varies from
declaring personal attributes, such as name, gender, and ed-
ucation, to sharing ideas, photos, events, and interests. It can
be broadly classified into explicit and implicit (Novak and Li
2012). Explicit content is information provided by the user
on the social media platform; it can be made publicly avail-
able or available to a limited set of users on that platform.
In contrast, implicit content is one that the users have cho-
sen to withhold from the platform but the platform can infer
based on explicit user content and the content in their social
networks. Advancements in data mining techniques have led
to the development of powerful models that can predict im-
plicit user information with good accuracy. Predicting im-
plicit user information has many applications, from adver-
tising and recommender systems (Ruining He 2018) to un-
derstanding health-related behavior (Sun et al. 2019a).
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While leading to a better and more personalized user ex-
perience and improved reach for advertisers, implicit at-
tribute prediction has also caused concerns regarding the pri-
vacy of users who participate in social networks (Lee Rainie
2018). Multiple studies have shown that it is possible to reli-
ably infer sensitive information from publicly available data
(Zheleva and Getoor 2009; Lindamood et al. 2009; Kosinski,
Stillwell, and Graepel 2013; Garcia 2017), leading to sensi-
tive attribute disclosure (Zheleva, Terzi, and Getoor 2012).
In the absence of rules and guidelines on how to ethically
perform such predictions, or how much of it is even accept-
able, individuals, companies and government entities can ap-
ply machine learning models on public data for classification
and prediction of user behaviour without the explicit per-
mission of the users themselves. Solutions such as allowing
users to hide their own information have only been success-
ful to a limited extent, due to the fact that these models also
take into account the data generated by other users in the
network. A natural question one can ask is whether users
have any power over protecting their own private informa-
tion from being predicted accurately.

We propose a user-centric solution that can help users
have more control over the prediction of their sensitive at-
tributes. We take an adversarial learning approach and de-
vise an algorithm, Outwit, which can suggest to users what
explicit content to change on their social network profiles, in
order to mislead predictive algorithms. Unlike a typical ad-
versarial scenario in which the adversary is the person trying
to mislead the predictive algorithm, we assume that the pre-
dictive algorithm itself is the adversary because it is trying
to infer a sensitive attribute. We focus on graph data and as-
sume that the predictive algorithm uses graph convolutional
networks (GCN) for sensitive attribute prediction.

Outwit’s goal is to mislead the predictive algorithm and
help a user protect their privacy. As such, Outwit falls un-
der the umbrella of evasion attacks in which contaminated
test data is introduced, in Outwit’s case the perturbed data
of an individual profile. Unlike existing evasion attacks for
GCN (Dai et al. 2018b; Wang and Gong 2019) which require
the content of multiple profiles to be perturbed, we consider
realistic constraints which assume that 1) a user has control
over changing their own content only and not the content
of other users and 2) that they are willing to change some
attributes and relationships but not others.



Algorithm Type Model knowledge Perturbations User-centric Target Model
(Zügner et al. 2018) Poisoning Black Box Feature & Edge No GCN

(Bojchevski et al. 2019) Poisoning White Box Edge No DeepWalk
(Sun et al. 2019b) Poisoning Black Box Edge No GCN

(Chang et al. 2019b) Poisoning Black Box Edge No DeepWalk, LINE & GCN
(Dai et al. 2018a) Evasion Black-box/White-box Edge No GCN

(Wang and Gong 2019) Evasion White Box Edge No LinLBP
Outwit Evasion Grey-box Feature & Edge Yes GCN

Table 1: Comparison between Outwit and other adversarial algorithms for node classification.

Our main contributions are:

• Framing a new privacy problem of user-centric adversar-
ial perturbations with utility constraints.

• Proposing a realistic ”grey-box” scenario in which the
model type of the predictive algorithm is known and
the algorithm parameters can be estimated using publicly
available data.

• Developing a new gradient-based algorithm which finds
the minimum number of node attribute and edge changes
necessary to get the sensitive attribute misclassified while
satisfying the utility constraints.

• Showing empirically that our solution leads to 8 − 25%
absolute accuracy decrease over a state-of-the-art adver-
sarial algorithm with as few as 6 edge deletions.

Related work
Friendship links and group affiliations can leak a surpris-
ingly large amount of sensitive data about individuals (Zhel-
eva and Getoor 2009; Lindamood et al. 2009; Kosinski,
Stillwell, and Graepel 2013) There has been an increas-
ing interest in personalized privacy assistants that can help
users manage their privacy online (e.g., (Fang and LeFevre
2010; Ghazinour, Matwin, and Sokolova 2013; Wisniewski,
Knijnenburg, and Lipford 2017)). Meanwhile, the use of
graph neural networks has increased in popularity recently
(Gori, Monfardini, and Scarselli 2005; Scarselli et al. 2005,
2009a,b; Li et al. 2016), posing threats to personal privacy.
However, none of the personalized privacy assistant studies
consider user-centric adversarial approaches to combat the
predictive power of neural network algorithms, as we do in
this work.

The goal of adversarial attacks is to mislead machine
learning models by either introducing misleading examples
during the testing phase (evasion attack)(Dai et al. 2018a;
Wang and Gong 2019), contaminating the training data with
malicious examples (poisoning attack)(Zügner, Akbarne-
jad, and Günnemann 2018; Sun et al. 2019b, 2018; Chang
et al. 2019b) or by learning about the model it is trying
to mislead as much as possible (exploratory attack) (Big-
gio, Fumera, and Roli 2014). Adversarial learning in graphs
is fairly new (Zügner, Akbarnejad, and Günnemann 2018;
Dai et al. 2018a; Sun et al. 2018). Dai et al. (Dai et al.
2018a) demonstrate a black-box evasion attack assuming
GCN (Kipf and Welling 2017) as the node classification
model. The model is allowed to add or delete edges from the
graph but node features remain unchanged. Dai et al. also

propose a gradient-based white-box attack algorithm which
is closest to our work and we use as a baseline. In contrast
to their greedy combinatorial approach, we use the magni-
tude of the gradients along with the degree of the nodes to
find optimal perturbations. Zügner et al. (Zügner, Akbarne-
jad, and Günnemann 2018) focus on poisoning attacks, also
using GCN (Kipf and Welling 2017) as the target model but
without preserving its non-linearity. The attacker is allowed
to manipulate the graph structure as well as the node fea-
tures while preserving important graph characteristics (de-
gree distribution and feature co-occurrences). Sun et al. (Sun
et al. 2018) present a poisoning attack against unsupervised
node embedding methods. The goal is to either change the
similarity score of a target node pair, or to affect the link
prediction accuracy of a test set by adding or deleting edges.
Wang et al. (Wang and Gong 2019) optimizes attack tar-
geting Linearized Loopy Belief classifier in order to evade
detection via manipulating the graph structure resulting in
increase of False Negative Rate. Table 1 summarizes the
differences between these approaches and ours. To the best
of our knowledge, we are the first ones to consider feature
perturbations for evasion attacks and to use graph deriva-
tive mapping between node features and class labels for de-
termining feature perturbations. While other white box eva-
sion models (Dai et al. 2018b) greedily add and delete edges
based on the gradient information, we use the gradient infor-
mation to first find the dominant nodes in the graph and then
make changes to the target node’s edges.

Preliminaries

Data model

We represent the social network as an undirected graph.
The users in the network are represented by nodes and their
profile information is represented by the attributes or fea-
tures of the nodes. Relationships, such as friendships or fol-
lowing relationships, are represented by edges between the
users. Formally, let G = (A,X) be an attributed undirected
graph where A ∈ {0, 1}N×N is the symmetric binary ad-
jacency matrix representing the relationships between the
users, X ∈ {0, 1}N×D represents the binary nodes’ fea-
tures, N represents the number of users and D represents
the number of node features. We denote the D-dimensional
feature vector of node i as Xi ∈ {0, 1}D. We assume the
node ID to be N = {1, 2, ..., N} and feature-ids to be
{1, 2, ..., D}.



Figure 1: A user in social network from class A changes some parts of his profile to keep his class label private, successfully
gets misclassified to class B

Target classifier

We assume that there is a target classifier that is used to
predict missing (and potentially sensitive) attributes on user
profiles, in order to target users based on hidden character-
istics. This classifier can be built by the company behind the
social network or third parties with access to the social net-
work data. The target classifier performs node classification
and it considers a partially labeled graphGL = (A,X,YL),
where YL are nodes with explicit labels. If there are C
classes, we assume the class labels to be C = {1, 2, ..., C}.
Given this partially labelled graph GL, the task of the tar-
get classifier is to find an optimal function f : N → C
which maps each node i ∈ N to a single class in C in or-
der to correctly classify the unlabeled nodes. Since we have
the complete A and X , the features and edges of unlabelled
nodes (test nodes) in the graph GL are known and are part
of the training data hence this corresponds to a transductive
learning scenario (Chapelle, Scholkopf, and Zien 2009).

Graph Convolutional Networks (GCNs) have achieved
state-of-the-art results on node classification tasks hence we
assume that the target classifier is based on GCN by Kipf and
Welling (2016) (Kipf and Welling 2017). GCNs use spec-
tral graph convolutions in which filter parameters are shared
over all locations in the graph. A single layer in this model
is a non linear function of the form:

H(k+1) = σ(H(k), Â,W ) (1)

where H(0) = X ,K is the number of layers and W is train-
able weight matrix. The model uses ReLU as the non-linear
activation function; the adjacency matrix A is normalized
for faster computation. The final model is a 2-layer neural
network with the following propagation rule -

Z = f(X,A) = softmax(Â ReLU(Â X W (0))W (1))
(2)

where W (0) ∈ RD×H is an input-to-hidden weight matrix
for a hidden layer with H feature maps. W (1) ∈ RH×C

is a hidden-to-output weight matrix. The softmax activa-
tion function, defined as softmax(hi) = 1

Z exp(hi) with
Z =

∑
i exp(hi), is applied row-wise. To optimize node

classification, cross-entropy error is used as loss over all la-

beled examples -

L = −
∑

Y ∈YL

∑
c∈C

Yc lnZc (3)

Information available to the adversarial algorithm
The goal of our adversarial algorithm is to perturb the graph
attributes of a focus node in a way that makes the target clas-
sifier predict poorly the node’s sensitive attribute. There are
two types of information that the adversarial algorithm has
access to: 1) information about the target classifier, and 2)
user attributes and edges that adversarial algorithm has the
power to perturb.

Adversarial attacks can be classified into two main groups
based on the amount of target classifier information accessi-
ble to them:

• White-box attack: The algorithm has access to the tar-
get classifier predictions and to its model parameters (Dai
et al. 2018a; Sun et al. 2018).

• Black-box attack: The algorithm has access only to the
predictions of the target classifier (Chang et al. 2019a;
Zügner, Akbarnejad, and Günnemann 2018; Dai et al.
2018a; Bojchevski and Günnemann 2019).

Here we introduce a third type of attack which we call
Grey-box attack. In a grey-box attack, the adversarial algo-
rithm does not have access to the actual target model but has
partial access to the training nodes of the target classifier
and their true labels. Therefore, it can estimate the param-
eters of the target model based on this data and make node
label predictions using the estimated model. Grey-box at-
tacks are more practical than white box attacks because the
adversarial algorithm is unlikely to have access to the target
classifier parameters but can estimate them based on pub-
licly available data. At the same time, black box attacks are
rather limited in their capabilities and are known to perform
much worse than white-box attacks (Dai et al. 2018a).

Our work assumes a grey-box attack and that the adversar-
ial algorithm has access to true class labels for some nodes
in the graph to train the estimated classifier. We also make
the practical assumption that the only information that the
adversarial algorithm can change is the focus node’s own



attributes and friendship links. This user-centric approach is
one of the main distinguishing characteristics of our setup as
compared to current adversarial algorithms on graphs which
assume that they can perturb multiple nodes’ profiles at the
same time (Zügner, Akbarnejad, and Günnemann 2018; Dai
et al. 2018a; Bojchevski and Günnemann 2019; Chang et al.
2019a; Sun et al. 2018; Zügner and Günnemann 2019; Wang
and Gong 2019; Sun et al. 2019b; Chang et al. 2019b).

Privacy protection problem
Adversarial Perturbations
The task of the adversarial algorithm is to modify the profile
information and relationships of a target user t in the social
network such that the target classifier f cannot predict the
true class label of t. Since f ’s parameters are unknown, we
estimate a classifier f̂ trained on a partially labelled social
network graph GL. Let G̃ be the graph after the adversar-
ial algorithm is applied, Xtd ∈ {0, 1} and X̃td ∈ {0, 1} be
the values of feature d for target node t before and after the
perturbation, Ati ∈ {0, 1} be a binary value representing
whether an edge exists between node t and node i, and let
the constants γ, δ ∈ Z≥0 represent the maximum number
of changes that are allowed to be made to the feature vector
and edges respectively for node t. Given the classifier f̂ and
(Gt, Yt) where Gt is the graph visible to the target node t
and Yt is the true class of t, the task of the adversarial algo-
rithm g : G → G̃ is to modify the graph G = (A,X) to
G̃ = (Ã, X̃) such that:

max
G̃

P (f̂(G̃, t) 6= Yt)

s.t. G̃ = g(f̂ , (Gt, Yt))

D∑
d=1

| Xtd − X̃td |≤ γ

i=N∑
i=1

| Ati − Ãti |≤ δ

(4)

The constraints ensure that the adversarial algorithm does
not drastically modify the target node and that the changes it
makes are unnoticeable. These perturbations will allow a so-
cial network user to change their profile and safeguard their
sensitive attributes from machine learning predictions.

The computational complexity of training the estimated
model and finding the features and nodes that are most help-
ful in prediction is O(EHDC) (Kipf and Welling 2017)
where E =

∑N
i=1,j=1Ai,j > 0 is the number of graph

edges. The computational complexity to find edge pertur-
bations is O(Et +D) where Etis the degree of target node
and the complexity to find the optimal feature perturbation
isO(D). Hence the complexity to find both feature and edge
perturbations for a target user is O(Et +D).

Utility-constrained Perturbations
There is a utility cost associated with hiding or changing
attributes on social media. For example, a user may not be

willing to declare a different gender from their real gender
online or unfriend their spouse, in order to impact the accu-
racy of predicting another, sensitive attribute. A user may be
more willing to agree to change favorite foods and movies
or to ”unfriend” an elementary school classmate. Therefore,
there is a cost to changing some attribute and our algorithm
needs to take this cost into consideration. We define user-
specific feature utilities as U = RN×D such that a high util-
ity Ui,d corresponds to user i being less willing to change
feature Xid.

In order to account for feature utilities in deciding which
features to change, we add a utility constraint to our prob-
lem. The utility-constrained adversarial algorithm is allowed
to change only those attributes whose user utilities are below
a certain threshold. The following is the final optimization
problem with utility constraints:

max
G̃

P (f̂(G̃, t) 6= Yt)

s.t. G̃ = g(f̂ , (Gt, Yt))

∀t, d : Utd ≥ η =⇒ X̃td = Xtd

∀i, j : Vij ≥ µ =⇒ Ãij = Aij

D∑
d=1

| Xtd − X̃td |≤ γ

i=N∑
i=1

| Ati − Ãti |≤ δ

(5)

where Utd is the utility of the feature d for node t, Vij is
the utility of the edge between node i and j, η and µ are the
thresholds below which the features and edge are allowed to
be modified respectively.

Adversarial, user-centric privacy protection
Here, we present Outwit, our algorithm for solving the pri-
vacy protection problem through adversarial perturbations,
targeting Graph Convolutional Networks. Given a graph G
and a target classifier f̂ , our goal is to protect the privacy of
a target user t by performing a small number of perturba-
tions on their profile leading to the graph G̃, such that t gets
misclassified by f̂ . Outwit has two types of perturbations:
feature perturbations and edge perturbations that we de-
scribe next. To the best of our knowledge, we are the first
ones to consider feature perturbations for evasion attacks
and to use graph derivative mapping between node features
and class labels for determining feature perturbations. As far
as novelty in the edge perturbations, other white box eva-
sion models (Dai et al. 2018b) greedily add and delete edges
based on the gradient information but we use the gradient
information to first find the dominant nodes in the graph and
then make changes to the target node’s edges.

Feature perturbations
Given the estimated node classifier f̂ , Outwit finds the the
node’s attributes most likely to cause the change to the pre-
diction in the target classifier. In order to do so, it looks at



dL
dW (0) , the gradient of the loss in the final layer with respect
to the weights in the first layer:

dL
dW (0)

=
dL
dH(0)

× dH(0)

dW (0)
= RD×H (6)

Outwit feeds feature matrix X as the input in the first layer
hence the output of the first layer H(0) is Â X W (0). Be-
cause weight vector W (0) is being multiplied with X this
gradient indicates the importance given to different features
in the nodes. There are H spectral filters in the first hid-
den layer of our GCN i.e. W (0) = RN×D, hence there are
H gradient vectors, each associated with one of the filter
parameters. Each of the spectral filters focuses on specific
features to pass to the next GCN layer. Outwit makes a list
of all such features in decreasing order of the magnitude of
their gradients and select the top features. Then it finds the
association of these features with one of the class labels.

For each node in the labeled set Outwit finds the distribu-
tion of class labels with respect to the feature. For all such
features in our final list, it finds one class or at most a combi-
nation of two classes to have a much higher frequency than
the remaining classes.

d =⇒ c | c = argmax(

N∑
i=1

Yi, whereXi,d = X ) (7)

where X is a particular feature. Then Outwit creates a map-
ping for the classes and the features associated with them.

Given a target node, the top γ features associated with the
true class of this node which are visible to the classifier f̂
are set to 0. Then Outwit uses the list of mappings between
features and the classes to select specific features from these
mappings that are associated with a class other than the tar-
get user’s true class. These features are changed to 1 if they
were 0 before, until reaching γ perturbations, the upper limit
of allowed feature perturbations.

Edge perturbations
Edges between nodes in a graph play a prominent role in
node classification. The target GCN model can predict the
target node’s label with considerable accuracy even when
none of the features from the test set are revealed to it (refer
to Table 4 in Section 29) by using labels from the neighbour-
ing labeled nodes. It is thus important to find these dominant
neighboring users in the target user’s neighbourhood and re-
move the connections to them, in order to decrease the con-
fidence of the classifier towards the target node’s true class
label. To this end, Outwit finds

dL
d(edges)

=
dL
dA

=
dL
dH(0)

× dH(0)

dA
= RN×N (8)

the gradient of the loss in the final layer with respect to
edges represented by A, the adjacency matrix. Some of the
edges have a larger gradient magnitude than others which
suggests that these edges provide significant information to
their neighbouring node in the aggregation process of graph
convolution. Outwit orders all node pairs (edges) in decreas-
ing order of their magnitude of gradient. The users repre-
sented by nodes with a significantly large frequency of oc-
currence are the best classification contributors in the graph,

they pass their class label information to their neighbouring
nodes. Outwit maintains a mapping of all classes to these
dominant nodes. Outwit scans all the edges of the target user
in the order of decreasing gradient and connections to the
top δ nodes that have the same class as the target node’s true
class are removed.

It is also possible to connect the target node to dominant
users in GL, in order to increase the confidence of the node
classifier towards the class label of these dominant nodes.
Outwit finds the dominant users from the class other than
the target user’s true class and adds edges between the target
node and these dominant nodes until it reaches the constraint
of maximum edge perturbations δ. Dependent on the plat-
form, edge addition perturbations can be harder to achieve
than edge removals. For example, it is a lot easier to add a
link to someone when reciprocity of relationship is not re-
quired (e.g., follower relationship on Twitter) versus when it
is required (e.g., friendship relationship on Facebook).

Utility-constrained Outwit Algorithm

To protect privacy, Outwit perturbs information on user’s
profile as described in the previous subsections. The input
to the Outwit algorithm is a partially labeled graph GL, a
target node t and its true class label Yt. The output is G̃ such
that the target user profile information is perturbed. Before
it begins, it trains the GCN classifier f̂ according to Equa-
tion 2 to obtain trained weightsW (0) andW (1). Algorithm 1
shows the pseudo-code for Outwit which first looks for fea-
tures to perturb (Lines 8 − 18). It finds the gradient of loss
L of f̂ with respect to W (0). It looks for the most important
feature in every spectral filter h ∈ H and stores them in the
features variable (lines 10− 12). These features represent
the most important attributes of the user profile as these help
the classifier to identify the node’s class. But what is the re-
lation between these features and different classes? Which
feature combinations help the classifier to predict a certain
class? Lines 13− 15 try to find exactly this. For each of the
important features in the variable features, Outwit maps
them to a class in featuremap variable. Now that Outwit
has the most important node features and their relation to
the class labels, it changes the feature to decreases the con-
fidence of node classifier prediction towards y and increase
the confidence towards other classes for our target user node
(lines 17− 18). Then it finds edge perturbation for the target
user t (lines 20− 27), starting by finding the gradient of loss
Lwith respect toA, adjacency matrix. Outwit finds the users
which are most dominant in passing their class labels to their
neighbours in the GCN aggregation phase (lines 20 − 25).
Now that it has the dominant nodes in the graph, Outwit
removes the edges to dominant nodes whose class label is
same as target node’s class y and add edges to dominant
nodes from other class in (lines 26 − 27). This, combined
with the feature perturbation, will outwit the target classifier



into misclassifying the target user.

Algorithm 1: Outwit Algorithm
Input:

1 Graph GL = (A,X,YL)
2 Target node t and it’s true class Yt
3 Utility U

Output:
4 Perturbed graph G̃ = (Ã, X̃)
5

6 Train f̂ on GL to obtain W (0) and W (1)

7
/* Feature Perturbations */

8 features = []

9 gradientW = dL
dW (0)

10 foreach h ∈ H do
11 if U [t][d] ≤ η then
12 features← sort descending(d, key =

gradientW [h][d])

13 feature map = []
14 foreach d do
15 distribution = class distribution(d)
16 feature map← (d, index(max(distribution)))
17 Set top γ features of t to 0 from feature map where

class = y
18 Set top γ features of t to 1 from feature map where

class 6= y
19
/* Edge Perturbations */

20 gradientA = dL
dA

21 edge grads← sort descending(e, key =
gradientA)

22 node frequency ← []
23 foreach (n1, n2) ∈ edge grads do
24 node frequency ← frequency(n1, n2)

25 sort(node frequency)
26 Remove top δ edges from G such that t ∈ (·, ·) and

the node class = y // Equation 4
27 Add top δ edges to G such that t ∈ (·, ·) and the node

class 6= y
28

29 Return G̃

Experiments
Datasets
We consider three citation network datasets, Citeseer (Lu
and Getoor 2003), Cora (Lu and Getoor 2003), and Pubmed
(Sen et al. 2008), together with one Twitter retweet net-
work (Ribeiro et al. 2018). Dataset statistics are summa-
rized in Table 2. We treat each scientific paper as a node
and the citation links as (undirected) edges between them.
The Cora and CiteSeer datasets consists of sparse 0/1-valued
bag-of-words feature vectors for each document indicating
the absence/presence of the corresponding word in the doc-
ument and a list of citation links between them. Each publi-
cation in the the Pubmed diabetes dataset is described by

a TF/IDF weighted word vector from a dictionary which
consists of 500 unique words. The Twitter node features are
spaCy’s off-the-shelf 300-dimensional GloVe’s vector along
with few profile attributes and manual annotation whether a
user is hateful or not. The features are averaged across all
words in a given tweet, and subsequently, across all tweets
a user has. Because these features are not binary, we apply
only edge perturbations to this dataset and not feature ones.

Dataset Nodes Edges Features Classes
Twitter 4971 15,142 320 2
Citeseer 3,327 4,732 3,703 6

Cora 2,708 5,429 1,433 7
Pubmed 19,717 44,338 500 3

Table 2: Dataset statistics.

Experimental setup
Our target model for the node classification task is a Graph
Convolutional Network from (Kipf and Welling 2017). The
model is trained with a 2-layer GCN. The model hyperpa-
rameters such as number of epochs, layers and hidden units,
learning rate and dropout rate are kept the same as in (Kipf
and Welling 2017).

We show results of the Outwit algorithm with equal utility
and various settings of δ and γ ranging from 6 feature per-
turbations, 2 edge perturbations to 20 feature perturbation, 8
edge perturbations. To fairly compare with the baseline al-
gorithms, we also run experiments with edge perturbations
only with varying amount of δ from 2 to 8. We test our algo-
rithm with varying utility distribution with range values for
α and β. As we know that the user has no control over the
amount of information that is publicly available to train the
model, we run experiments with different ratio of training
dataset varying the set of labelled nodes in training set from
10% to 100%.

Baselines
We use Dai et al.’s (Dai et al. 2018a) and Wang et al.’s (Wang
and Gong 2019) white-box models as baseline models in our
experiments and adapt them to the user-centric, grey-box as-
sumptions of our privacy protection scenario. Because (Dai
et al. 2018a) and (Wang and Gong 2019) don’t perturb fea-
tures, a fair comparison requires to show results after edge
perturbations only. We also consider simple feature pertur-
bations as baselines, such as setting all the target node fea-
tures to zeros, to ones and random. For simple edge per-
turbations we use random edge rewiring to change the links
between the nodes. Table 4 shows classification accuracy for
the simple perturbations. The row ”unperturbed” shows the
result for f̂ . As we can see the average accuracy drops very
little for both simple feature and edge perturbations which
makes Outwit’s task very challenging.

Results
Target node perturbation Figure 2 shows the classifica-
tion performance of the target model when perturbing one



Figure 2: Average node classification accuracy after perturbing test nodes using Outwit algorithm. δ and γ represent maximum
number of edge and feature perturbations with δ/2, γ/2 additions and δ/2, γ/2 deletions.

Figure 3: Average node classification accuracy after perturbing test nodes using Outwit algorithm, showing significant decrease
(23− 47%) in accuracy compared to the baseline when 6 or more edges are deleted.

node at a time. The test nodes are perturbed using the Out-
wit algorithm with different settings of γ and δ. There is a
significant decrease in classification accuracy with only 4
edge perturbations and 6 feature perturbations. As expected,
the average accuracy drops as we allow more perturbations.
With a maximum of just 8 edge perturbations and 10 fea-
ture perturbations (0.5% of the total information present in
the target node) the average accuracy drastically falls more
than 50%. Figure 3 shows the comparison of Outwit with the
baseline model with only edge perturbations.

Different ratios of training data Since social networks
evolve and change over time, the ratio of publicly available
and hidden data can change as well. In order to train the tar-
get model, we assume that few of the nodes in the graph are
labelled. The ratio of this trained data may vary across differ-
ent social networks and may also vary over time. So we test
the perturbations generated by Outwit algorithm with differ-
ent ratios of training data. Table 3 shows the performance of
the perturbations with varying ratios of labelled nodes. ”Es-
timated” column shows the performance of model which is
trained on partial training data and ”Target” column shows
the performance of the company model trained on 100% of
training data. It is seen that the perturbations generated by
our algorithm work well for all the ratios of training data
and as the previous experiments, we are perturbing one test
node at a time, and not their neighbors’ information.

Increasing number of colluding users One of the as-
sumptions of our paper is that perturbations are user-centric

and Outwit is not allowed to change the attributes of multi-
ple nodes. Here we relax this assumption and show empiri-
cally how the average accuracy of the target model is further
reduced when a randomly selected group of 10 to 50 users
simultaneously use adversarial perturbations from the Out-
wit algorithm. Figure 4 shows the performance of the target
model when many random users simultaneously use 6 edge
perturbations and 8 feature perturbations with utility con-
straints with α = β = 0.5. The x-axis represent number
of users simultaneously adding adversarial information and
y-axis represent the average node classification accuracy of
GCN. As the number of users increases, the average classi-
fication accuracy of the target model decreases even further
because adversarial information is passed on to neighbour-
ing nodes in the GCN aggregation phase, causing the target
model performance to decrease further.

Figure 4: Performance with increasing number of colluding
users for Outwit (OA) and the baseline (BL).



Training
Ratio

Cora Citeseer
Estimated Target Estimated Target

Perturbed Unperturbed Perturbed Unperturbed Perturbed Unperturbed Perturbed Unperturbed
10% 19.1% 70.1% 40.2% 85.5% 5.8% 65.1% 38.4% 77.7%
30% 13.1% 80.8% 31.7% 85.5% 6.0% 72.9% 21.7% 77.7%
50% 12.8% 85.3% 22.1% 85.5% 8.3% 74.9% 19.4% 77.7%
70% 15.1% 86.3% 20.3% 85.5% 9.6% 75.8% 15.1% 77.7%
90% 14.2% 85.4% 16.8% 85.5% 10% 75.8% 12.5% 77.7%
100% 15.0% 85.5% 15.0% 85.5% 9.3% 77.7% 9.3% 77.7%

Training
Ratio

Pubmed Twitter
Estimated Target Estimated Target

Perturbed Unperturbed Perturbed Unperturbed Perturbed Unperturbed Perturbed Unperturbed
10% 36.3% 83.2% 53.2% 87.9% 32.8% 66.8% 52.7% 76.5%
30% 38.7% 85.5% 49.5% 87.9% 29.6% 68.9% 44.3% 76.5%
50% 39.8% 85.8% 46.9% 87.9% 27.9% 70.4% 38.5% 76.5%
70% 39.7% 86.8% 43.4% 87.9% 25.7% 72.3% 29.9% 76.5%
90% 40.2% 86.7% 41.7% 87.9% 26.8% 75.7% 27.3% 76.5%
100% 40.8% 87.9% 40.8% 87.9% 25.2% 76.5% 25.2% 76.5%

Table 3: Average accuracy for varying ratios of labelled training nodes. The ”unperturbed” column shows the average accuracy
of the learned classifier (estimated or target) on test data and the ”perturbed” column shows average accuracy after the Outwit
user-centric perturbation.

Strategy Cora Citeseer Pubmed
Unperturbed 80.8% 72.9% 85.5%

Feature
All set to 0 76.6% 67.3% 81.1%
All set to 1 76.6% 67.2% 81.4%

Random 76.8% 67.0% 80.3%
Edge Random rewiring 75.7% 65.1% 78.7%

Table 4: Accuracy for simple feature and edge perturbations

Sensitivity of Outwit to node degree Here we analyze the
sensitivity of Outwit to the node degree and whether it per-
forms poorly for low-degree nodes. Figure 5 shows the re-
lation between average accuracy of perturbed nodes to their
degree. As expected, Outwit can better perturb the node to
preserve privacy with increasing node degree. Nevertheless,
Outwit still performs much better than all the baselines as
shown earlier.

Figure 5: Sensitivity of Outwit to node degree.

Varying Utility In the real world every user has differ-
ent utility distribution for their profile attributes. In order
to replicate the level of mutability of profile attributes we
generate U , a utility distribution on top of each dataset.
We model the utility values for attributes of a user as ran-

dom variables from a Bernoulli distribution. Each feature
has a different parameter p for their Bernoulli drawn from a
Beta distribution prior α and β. We vary the Beta parameter
α = 2,β = 5(i.e., features tend to have mostly high levels
of utility) to α = 5,β = 2 (i.e., features tend to have mostly
low levels of utility p parameters). This allows us to draw a
utility value for each user and attribute pair. Figure 6 shows
the average classification accuracy under utility constraints.
α and β represent the parameters for the beta distribution
used to generate the utility distribution. It is observed that
even when utility constraints are applied, the perturbations
suggested by algorithm significantly decrease the node clas-
sification accuracies when test data is perturbed one node at
a time. The accuracies are consistently low for all values of
α and β.

Figure 6: Average accuracy with varying utility. α , β are the
parameters of the beta distribution.

Conclusion
In this work, we presented Outwit, an algorithm which helps
social network users find small user-centric adversarial per-
turbations in their profile which lead to a significant decrease
in prediction performance of target classifiers in the form of



graph convolutional networks. Outwit is a viable approach
by which users can ensure that their sensitive information
cannot be reliably used. Our experiments show that only a
few perturbations are required to prevent a target classifier
from predicting the true label. Even after applying the utility
constraints on the perturbations, the algorithm was able to
perform well.
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versarial Attacks on Neural Networks for Graph Data. In
Proceedings of the 24th ACM SIGKDD International Con-
ference on Knowledge Discovery & Data Mining, KDD ’18.
New York, NY, USA: ACM. ISBN 978-1-4503-5552-0.
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