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Abstract

Collaborative and federated machine learning is an essential
vehicle for achieving privacy preserving machine learning.
By not forcing participants to share their private datasets,
we can adhere to strict local as well as international pri-
vacy protection legal regimes. However, a federated learn-
ing mechanism is usually hindered by the overhead com-
munication costs between the central server and participants
when communication channels have constrained capacities.
Furthermore, just refraining from sharing the data will not
lead us to absolute privacy, e.g. in presence of privacy attacks
such as membership inference. Differential Privacy has pro-
vided a set of rigorous privacy standards to protect individual
records of a dataset being used by a randomized mechanism.
As differential privacy has been widely accepted as the de
facto privacy standard in machine learning, it could poten-
tially mitigate privacy concerns. However, addition of differ-
ential privacy usually costs even more communication over-
head, putting more pressure on uplink and downlink chan-
nels. In this work, we present a novel algorithm for achieving
both differential privacy and reduced communication over-
head through compression of client-server communication by
means of quantization. Not only we show acceptable levels of
differential privacy, we also show significant gains in terms
of communication efficiency by compressing the data on the
constrained uplink channel.

1 Introduction
Traditional machine learning paradigms usually require for
all training data to be accumulated in one place. Nowa-
days, this practice poses several challenges, two of the
most important instances of which being constrained ca-
pacity of communication channels for data transfer and pri-
vacy concerns. Collaborative and federated learning mech-
anisms solve this problem by instead bringing the compu-
tation to the data, making the learning process distributed.
This negates the privacy-violating process of transferring
private datasets from participants to a central authority, but
doesn’t solve the privacy challenges completely.
Aside from a more complicated risk model by introduc-
ing communication channels and usually a central author-
ity to the machine learning pipeline, this collaborative learn-
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ing scheme too suffers from the communication overhead
similar to that of centralized learning. The difference is, in-
stead of the overhead related to communicating big datasets
once, the extra communication load is due to performing nu-
merous rounds of training over a distributed setting. Smaller
packets of model parameter are sent on the uplink and down-
link channels between participants and the parameter server
numerous times, making accumulative communication over-
head high.

Regarding privacy aspects of federated machine learning,
it has been shown that they can still leak critical informa-
tion about their training dataset as well as the model pa-
rameters despite not forcing the participants to share their
private data (Song, Ristenpart, and Shmatikov 2017; Nasr,
Shokri, and Houmansadr 2018). Thus, we need to take addi-
tional measures to ensure the privacy of the training data is
preserved. In recent years, the de facto standard of privacy
for data access mechanisms has been Differential Privacy
(Dwork, Roth et al. 2014) and its applications have been rig-
orously researched in machine learning (Abadi et al. 2016;
Chamikara et al. 2019). Differential Privacy could theoret-
ically be achieved via perturbation as long as the bounds
of the introduced perturbation are calculable. The main idea
behind this work stems from the necessity of compressing
communications between participants and central authority
and considering the inevitable transformation of communi-
cated data as a form of perturbation. Thus with regards to
the previously defined general problems of federated learn-
ing, namely communication overhead and privacy and con-
sidering that , one can pose the research question ”Is is pos-
sible to use the perturbation resulting from compression of
communication in a federated learning scenario to achieve
Differential Privacy?”.

In this work, we investigate the above research question
and present a method for differentially private compres-
sion of the communicated parameters between participants
and the parameter server through compression. Using this
method we can achieve not only more efficient communica-
tion, but also an effective level of privacy in local domain,
i.e. sample level privacy.

1.1 Our Contribution
• We design a novel method to achieve differential privacy

through quantization of the federated communications.



The novelty of this mechanism is to translate the perturba-
tion by the compression method, namely universal lattice
quantization, into measurable Gaussian noise independent
of the source distribution using dithering mechanism. To
the best of our knowledge, this is the first time the pertur-
bation introduced by quantization has been employed as a
source of noise to achieve differential privacy.

• We provide analysis of the quantization noise in differ-
ent quantization schemes and connect their respective
noise models to that of specific differentially-private noise
adding mechanisms, making the connection between the
two paradigms.

• We provide algorithms for compressive differentially pri-
vate federated learning both to achieve local differential
privacy. We design experiments and report preliminary re-
sults, proving the system can achieve compression while
maintaining an acceptable level of privacy and utility.

2 Preliminaries
This section provides preliminaries and background infor-
mation on federated learning, differential privacy, select
noise-adding mechanisms for differential privacy and uni-
versal lattice vector quantization as well as the noise models
of the quantization techniques.

2.1 Horizontal Federated Learning
Federated learning (FL) (McMahan et al. 2017) is a collab-
orative learning scheme for distributed training of machine
learning systems on multiple participants without them hav-
ing to share their respective private datasets. In FL, the pri-
vate datasets are accessed and processed locally, after which
a central Parameter Server (PS), usually acting as orchestra-
tor and aggregator, gathers and combines the local updates
and returns the updated parameter set to the learning parties.

In the basic fusion algorithm proposed by McMahan et al.,
namely Federated Stochastic Gradient Descent (FedSGD),
one step of gradient descent is done per learning round. Sup-
posing N participants in total, in the first round the PS ran-
domly generates the parameter set θ0 and communicates it
to all learning parties. Then at the round r ≥ 1 the ith par-
ticipant Pi will perform one round of the training, compute
its local gradients gi,r and send them back to the PS. After
receiving the parameters sets from M ≤ N participants, the
mechanism F on parameters server attempts to compute the
new weights, θr+1, using the M parameter sets as

F (g1,r, ..., gM,r) = θr − η
M∑
i=1

wigi,r

where η is the PS learning rate and wi is the weight assigned
to each participant, e.g. the percentage of the samples they
are hosting.

2.2 Differential Privacy
Differential Privacy (DP) is a set of mathematical conditions
to provide plausible deniability to every single member of
the training set in the context of machine learning. Consid-
ering adjacent datasets D and D′ which differ in only one

element and the randomized mechanismM mapping the do-
main X to the range R, M : X → R, the mechanism M is
(ε, δ)-differentially private if for all possible outputs S ⊆ R

Pr[M(D) ∈ S] ≤ eε[Pr[M(D′) ∈ S] + δ

. ε (privacy budget) controls the trade-off of utility-privacy
and δ allows for a small probability of failure for the privacy
preservation mechanism. Simply put, DP caps the increase
in information learned by changing a single element in the
dataset.

2.3 Making Mechanism M Differentially Private
Methods used to make randomized mechanisms private usu-
ally involve some form of perturbation, e.g. noise addition.
Noise addition mechanisms are usually applied to the output
of query q. The amount of noise is controlled by the sensi-
tivity of the q, defined as maximum change in the output of
q for any adjacent datasets D and D′:

Sq = max ‖q(D)− q(D′)‖

.

(0, δ)-Differential Privacy with Uniform Noise Since the
distribution of the ideal universal quantization noise is uni-
form, in this section we study DP in presence of uniform
noise. According to (Geng and Viswanath 2015), in case of
(0, δ)-DP, the optimal noise mechanism for Sq = 1 has a
uniform probability distribution

P(x) =

{
δ
Sq

−Sq

2δ ≤ x ≤
Sq

2δ

0 otherwise
(1)

This result has been iterated in (Geng et al. 2019) as a
special case of truncated Laplacian mechanism.

For ε ≥ 0, 0 ≤ δ ≤ 1
2 and Sq ≥ 0, when ε → 0, it

will be reduced to a uniform distribution with the support of[
−Sq

2δ ,
Sq

2δ

]
and probability density of δ

Sq
.

Analytical Gaussian Mechanism The Gaussian noise
adding mechanism introduced in (Dwork, Roth et al. 2014)
has a limitation on ε, namely 0 ≤ ε ≤ 1. (Zhao et al. 2019)
show how this mechanism has been misused with ε > 1,
leading to a loss of privacy. Balle and Wang in (Balle and
Wang 2018) define analytical Gaussian noise adding mech-
anism Z ∼ N (0, σ2I) and show it to be (ε, δ)-DP for any
ε ≥ 0, δ ∈ [0, 1] if and only if Φ(

Sq

2σ −
εσ
Sq

) − eσΦ(−Sq

2σ −
εσ
Sq

) ≤ σ, with Φ being the Gaussian Comulative Distri-
bution Function (CDF). They also provide a numerical al-
gorithm to compute the optimal value of σ, which we will
leverage to fine tune out quantization parameters.

2.4 Differential Privacy Domains
In a FL setting, the DP aspect of the mechanism, i.e. the
machine learning algorithm, can be defined as either Global
or Local. Local Differential Privacy (LDP) in a FL setting is
applied on participant level. According to the definition of
LDP provided by (Bebensee 2019; Kasiviswanathan et al.



2011), a randomized mechanism M : X → R adheres to
LDP if for any x, x′ ∈ X and set of y ∈ R

Pr[M(x) = y] ≤ eε[Pr[M(x′) = y] + δ

Here the output value y is perturbed using a DP mechanism.
Global Differential Privacy (GDP) in FL is applied on ag-
gregation level, e.g. on PS. For the purpose of this work, the
mechanism F defined in 2.1 needs to adhere to DP condi-
tions defined in Section 2.2. This ensures that all participant
parameter sets will be protected under DP assumptions.

3 Proposed Method
In this section we propose a (ε, δ)-differentially private com-
pressive federated learning model to preserve local differen-
tial privacy. First, we provide two quantization schemes with
subtractive and non-subtractive dither. We provide analysis
of quantization noise for these methods. Next, we describe
our differentially private federated lea

3.1 Lattice Quantization and Its Noise Model
One of the challenges introduced by the FL paradigm is
the communication overhead between the participants and
the PS, especially in the presence of constrained uplink and
downlink channels. In this work we assume a constrained
capacity for the uplink channel. Therefore, optimizing the
communication component of the FL scheme is crucial. The
desired optimization could be achieved through compression
of the data packages being sent to PS by participants.

In the following section we will introduce Lattice Vec-
tor Quantization method as a way to achieve data compres-
sion. We define Subtractive Dithered and Non-Subtractive
Dithered Universal Vector Quantization (SDUVQ, NS-
DUVQ respectively) and formalize them as randomized
quantization methods.

Universal Lattice Vector Quantization Universal Lattice
Vector Quantization (LVQ)(Gersho 1979) which comprises
of Quantization followed by a lossless coding scheme is
the most efficient entropy coded vector quantization method
when the quantization rate goes to infinity(Gray and Neuhoff
1998). Introducing subtractive dither to the LVQ makes it
universal(Zamir and Feder 1992), i.e. the quantization noise
mechanism will be independent of the source distribution.
This type of quantization noise is called a Pseudo Quantiza-
tion Noise model (PQN). In case of non-subtractive dither,
it has been shown that the Gaussian dither essentially can
be modelled as PQN with quantization noise independent
of input distribution if σ ≥ ∆

2 . The two SDUVQ and NS-
DUVQ defined in this section are based on the uniform vec-
tor quantization scheme of (Dragotti and Gastpar 2009) with
a simple lattice code design and introduction of dither. Each
scheme will have an encoding and a decoding path. The en-
coding happens at source, i.e. participant, to compress the
input data while the decoding happens at the destination to
reconstruct the data.

Consider the N -dimensional vector ~w. We define the
quantization step size ∆ and lattice dimension L. The quan-
tization parameters are known by both source and destina-
tion.

In the encoding path, to quantize ~w first we break
it down into v = N

L smaller vectors of the size L{
~w0..L−1, ~wL..2L−1, ..., ~w(v−1)L..vL−1

}
. For the sake of

simplicity we assume N
L is an integer, but the scheme can

easily be modified by taking the dNL e instead if this con-
dition doesn’t hold true. Next, we will generate the v-
dimensional dither vector ~d = [d1, d2, ..., dv] by generat-
ing in an i.i.d fashion v uniform random variables with the
support

[
−∆

2 ,
∆
2

]
. We can also generate Gaussian dither

with µ = 0 and σ ≥ ∆
2 . Generating dither from uni-

form noise ensures source distribution-independent quan-
tization error(Zamir and Feder 1996) in case of subtrac-
tive dither. For non-subtractive dither, it has been shown
that the Gaussian dither comes extremely close to the PQN
model, rendering the quantization noise independent of the
source distribution and identified by the same Gaussian dis-
tribution(Widrow and Kollár 2008) (Chapter 19, Section
6.5). Next step would be applying the uniform quantiza-
tion method of (Dragotti and Gastpar 2009) but before that,
we need to randomize the source vector using our generated
dither to compute ~wd. To this end, each element of the dither
vector ~d will be added to the corresponding lattice cell, e.g.
~wdi = {wiL + di, wiL+1 + di, .., wiL−1 + di}. Then, we

apply the uniform quantization to each dithered lattice cell
~wdi as ~wqi = ∆round( ~wdi

∆ ). In the last stage of the en-
coding path, as per (Zamir and Feder 1992), we will use a
lossless entropy source encoder to compress ~wq. There are
a number of lossless source coding algorithms introduced
in the literature. For the purpose of this work we chose the
bzip2(Seward 1996) which uses the Burrows-Wheeler trans-
formation(Kruse and Mukherjee 1999). Applying the bzip2
algorithm on ~wq, we will end up with vector ~we and code-
book C

In the decoding path, to reconstruct the vector ~w′ we need
to decode the ~we using codebook C, resulting in vector ~wq.
This will be the end of the encoding path for the NSDUVQ
scheme.

The SDUVQ goes through additional steps of dither sub-
traction. First, the vector ~wq is divided into v lattice cells.
Next, using the shared source of randomness the random
vector ~d is reconstructed. Finally, the corresponding dither
values of ~d are subtracted from vector ~wq leading to the
reconstructed input vector ~w′.

The probability distribution of the noise of SDUVQ
scheme is completely independent of the input distribu-
tion(Zamir and Feder 1992) and can be defined as

P(x) =

{
1

2∆ −∆ ≤ x ≤ ∆
0 otherwise

(2)

As mentioned earlier, the quantization noise of NSDUVQ
with Gaussian dither can essentially behave as a PQN model
when σ ≥ ∆

2 , and we end up with a Gaussian noise pdf.

3.2 NSDUVQ-based Differentially Private
Federated Learning Mechanism

Algorithm 1 and algorithm 2 provide the federated learning
steps on participant and PS respectively for P participants.



We consider the case where the uplink from participant to
the PS is constrained while the downlink has enough ca-
pacity to handle the traffic efficiently, thus we only need to
increase efficiency in the uplink. The server is considered
honest but curious and we need to maintain local differential
privacy on sample level. Since uniform noise of the subtrac-
tive dither is inefficient for differential privacy without sig-
nificant loss of utility, we use non-subtractive dither method
with Gaussian noise adding mechanism. The value of σ is
fixed at ∆

2 .

Algorithm 1: Compressive (ε, δ)-DP Federated
Learning - Participant i, Round t > 1

Input: Training samples Di = {x1i, ..., xNi}, loss
function L(θ) = 1

Ni

∑
j L(θ, xij)

Parameters: gradient norm bound Sq , group size G,
lattice vector size L, quantization step
size ∆, noise scale N

1 Receive parameter set θt;
2 Take a random sample Lt with probability L

Ni
;

3 Choose subset Dt = {xj∈Lt
} from Di using Poisson

subsampling function Spo(.);
4 Compute gradient gt(Dt, θt);
5 Clip gradient ḡt ← gt/max(1,

‖gt‖2
Sq

);

6 Create Gaussian dither vector ~d by drawing Ni

L i.i.d
samples from N (0, σ2C2I) with σ = N∆;

7 Split ḡt into Ni

L lattice vectors {ḡt1, ..., ḡtL};
8 Randomize lattice vector ḡtj = ḡtj + ~d(j);
9 Quantize each lattice vector

ḡtqj = ∆round(ḡtqj/∆);
10 Encode the concatenated quantized gradient vector

ḡtq using universal source coding method bzip;
11 Send encoded gradient vector ḡeti and codebook

CBti to PS;

In round t = 1 the PS randomly initializes parameters set
θ0 and sends it to participants. We applying the quantization
after the calculation of the gradients using the quantization
noise to achieve a certain level of differential privacy. The
descent on noisy gradients is performed by the PS.

To calculate the accumulative privacy costs over a to-
tal of T steps, first we need to fix the parameters of our
noise mechanism. Consider the ideal quantization scheme
of SDUVQ, in which the noise is independent of the source
distribution and can be modelled as uniform noise. This will
be equivalent of achieving (0, δ)-DP. This special case is not
desirable for us, since it will lead to very low levels of pri-
vacy, e.g. considering Sq = 1, setting ∆ = 1/128 will
lead to δ = 64. In NSDUVQ scheme, although the quan-
tization noise can not be proven to be independent of the
source distribution, it is shown that for σ ≥ ∆

2 it essentially
follows a PQN model and behaves independent of the in-
put distribution and can be modeled by the Gaussian dither.
Furthermore, it is shown by Gariby and Erez (Gariby and
Erez 2008) that the lattice quantization noise can approach a
desired distribution, e.g. Gaussian distribution, with correct
design of the lattice itself. We use this principle to shape the

quantization noise to be Gaussian.
Fixing the values of ε, δ and ∆ and clipping the gradients

so that Sq = 1, we can then calculate the optimal value of
σ according to the numeric algorithm of analytical Gaussian
method (Balle and Wang 2018). Finally with the calculated
σ, we can define the lattice parameters and the noise scale
N of Algorithm 1 so that the quantization noise would be
∼ N (0, σ2I). We use advanced composition theorem and
privacy magnification through Poisson subsampling on our
privacy bounds while calculating the system parameters.

Algorithm 2: Compressive (ε, δ)-DP Federated
Learning - Parameter server (PS), Round t

Input: Encoded gradients of P participants
{Barget1 , ..., BargetP } and codebooks
{CBt1 , ..., CBtP }

Parameters: PS learning rate η
1 Decode gradient vectors {Bargqt1 , ..., BargqtP }

using codebooks {CBt1 , ..., CBtP } for P clients;
2 Descend and calculate new model parameters

θt+1 = θt − η
∑P
j=1 ḡqtj ;

3 Send updated model parameters θt+1 to P clients for
round t+1;

4 Experiments
4.1 Dataset and Experiment Design
We evaluate our method on EMNIST dataset. We simulate
a FL setup with 10 participants. We experiment in severe
and mild non-i.i.d data distribution cases. In severe non-i.i.d
distribution, each participant only holds data related to one
writer. In the mild non-i.i.d case, each client hold data re-
lated to 50 authors. To manage the trade-off between pri-
vacy and utility, we fix the privacy budget ε ≤ 10 and set
the quantization system setting so that we would achieve the
lowest σ value possible. This process has a trade-off in it-
self in form of quantization accuracy which directly affects
the quantization noise while having an inverse effect on util-
ity of the system in a fixed number of iterations. This also
affects the compression level achieved through the quantiza-
tion process.

4.2 Results
We applied the experiments above on a simple model with
a dense layer of the size 10. For ε = 9.94, δ = 0.001,
∆ = 1/64, L = 32, η = 0.01, T = 1000, G = 20,
P = 10, N = 74, σ = 1.15625 and with 4650 samples
per client, we report a sparse categorical accuracy of 92.2%
after T = 1000 iterations without early stopping, with the
algorithm converging around T = 650. The achieved aver-
age compression ratio over the 1000 iterations for all partic-
ipants is 2.97.

Based on the early results we have of non-concluded ex-
periments, the privacy level, utility and compression ratio
can certainly be massively improved by fine tuning the lat-
tice, the quantization accuracy and the target privacy budget.
Also, by experimenting with different architectures, we are
able to see varying levels of success, depending on the ar-
chitecture of the network and the training data.



5 Discussion
In this work, we explored the possibility of achieving differ-
ential privacy in a federated learning setting through quan-
tization. We have presented an end to end compressive fed-
erated protocol and provided an analysis of the quantization
noise. We integrated the quantization scheme with the fed-
erated learning setup and were able to achieve both com-
pression and differential privacy in our collaborative setup.
Although our experiments are still ongoing, early reported
results support our claim of privacy and compression.
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