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Abstract

Several optimization scenarios involve multiple agents that
desire to protect the privacy of their preferences. There ex-
ist distributed algorithms for constraint optimization that pro-
vide improved privacy protection through secure multiparty
computation. However, it comes at the expense of high com-
putational complexity and does not constitute a rigorous pri-
vacy guarantee, as the result of the computation itself may
compromise agents’ preferences. In this work, we show how
to achieve differential privacy through randomization of the
solving process. In particular, we present P-Gibbs, which
adapts the SD-Gibbs algorithm to obtain differential privacy
guarantees with much higher computational efficiency. Ex-
periments on graph coloring and meeting scheduling show
the algorithm’s privacy-performance trade-off compared to
variants with uniform sampling and the SD-Gibbs algorithm.

1 Introduction
The idea of distributed computation has been a trending
topic among computer scientists for decades. Distributing
the computation has several well-known advantages over
centralized computing. Some of these include no single
point failure, incremental growth, reliability, open system,
parallel computing, and easier management of resources.
One of the successful applications of distributed computing
is distributed constraint optimization problem (DCOP), first
introduced in (Yokoo et al. 1998).
Introducing DCOPs. DCOP is a problem where agents col-
lectively compute their value assignments in order to max-
imize the sum of resulting constraint rewards. In DCOP,
constraints quantify the preference that each agent places on
each of its possible assignments. DCOPs help model various
multi-agent coordination and resource allocation problems.
DCOPs find use in problems such as distributed scheduling
of meetings, the distributed allocation of targets to sensors in
a network, the distributed allocation of resources and coordi-
nation of mobile agents in disaster evacuation scenarios, and
the distributed management of power distribution networks.
DCOP Algorithms. Many a times, solving a DCOP in-
stance is NP-Hard. Nevertheless, the field has grown steadily
over the years, with several algorithms being introduced
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to solve DCOP instances, each providing some improve-
ment over the previous (Fioretto, Pontelli, and Yeoh 2018).
These algorithms are either: (1) search-based algorithms like
SynchBB (Hirayama and Yokoo 1997), ADOPT (Modi et al.
2005) and its variants, AFB (Gershman, Meisels, and Zi-
van 2009), and MGM (Maheswaran, Pearce, and Tambe
2006), where the agents enumerate through sequences of
assignments in a decentralized manner; and (2) inference-
based algorithms like DPOP (Petcu and Faltings 2005),
max-sum (Farinelli et al. 2008), and Action GDL (Vinyals,
Rodriguez-Aguilar, and Cerquides 2009), where the agents
use dynamic programming to propagate aggregated infor-
mation to other agents.

Ottens, Dimitrakakis, and Faltings (2012) propose Dis-
tributed Upper Confidence Tree (DUCT), an extension of
UCB (Fischer and Muller 1991) and UCT (Gelly and Silver
2007). While DUCT outperforms the algorithms above, its
per-agent memory requirement is exponential in the number
of agents. It prohibits it from scaling up to larger problems.

Nguyen et al. (2019) improve upon DUCT through their
sampling-based DCOP algorithms called Sequential Dis-
tributed Gibbs (SD-Gibbs) and Parallel Distributed Gibbs
(PD-Gibbs). These are distributed extensions of the Gibbs
algorithm (Liao 1998). Both SD-Gibbs and PD-Gibbs have a
linear-space memory requirement, i.e., the memory require-
ment per agent is linear in the number of agents. The authors
showed empirically that SD-Gibbs and PD-Gibbs could find
better solutions than DUCT, run faster, and solve some large
problems that DUCT fails to solve due to memory limita-
tions. Therefore, in this work, we focus on SD-Gibbs.1

Privacy in DCOPs. The need for preserving the privacy
of an agent’s private information is vital and is an active
research area (Damle, Faltings, and Gujar 2019; Sharma,
Xing, and Liu 2019; Li et al. 2020; Lu, Tang, and Wang
2018). This need holds for DCOPs too, as, in the process
of ‘solving’ a DCOP instance, the transfer of information
across agents may leak sensitive information, such as agent’s
preferences, to the other participating agents. Thus, privacy-
preserving solutions to DCOPs are necessary and form the
basis of this work.

Privacy in DCOPs has focused on the use of cryptographic
primitives, such as partial homomorphic encryption. Sev-

1Our results also follow for PD-Gibbs.



eral privacy-preserving algorithms are present in literature,
which use cryptographic primitives atop existing DCOP
algorithms to provide strong privacy guarantees. These
include P-DPOP, P3/2-DPOP, P2-DPOP (Léauté 2011),
which build on the DPOP algorithm; P-SyncBB (Grinsh-
poun and Tassa 2016) over SynchBB; and most recently
P-MaxSum (Tassa, Grinshpoun, and Zivan 2017) which
presents the privacy variant of the max-sum algorithm. How-
ever, the use of cryptographic primitives and the com-
putationally expensive nature of DCOPs results in these
algorithms not being scalable, even for moderate prob-
lems. Moreover, these techniques cannot be generalized
to sampling-based algorithms such as DUCT, SD-Gibbs,
which are computationally efficient.

Brito et al. (Brito et al. 2009) use information entropy to
quantify the privacy loss incurred by an algorithm in the pro-
cess of solving a DCOP. Grinshpoun et al. (Grinshpoun et al.
2013) present private local-search algorithms, based on the
aforementioned algorithms. The authors use the quantifica-
tion to show that their algorithms provide high quality of so-
lutions while simultaneously preserving privacy. While the
privacy loss metric defined in (Brito et al. 2009) is interest-
ing, we believe it is not rigorous. Moreover, the improved
performance of SD-Gibbs, both in terms of solution quality
and memory, motivates us to design new private algorithms
with rigorous privacy guarantees.
Differential Privacy (DP). We use DP (Dwork 2006;
Dwork et al. 2006) to preserve privacy of agent preferences,
i.e., ensuring constraint privacy in DCOPs. For cases when
the set of variables and agents involved is common knowl-
edge, there are more efficient techniques for distributed op-
timization using a central coordinator and stochastic gradi-
ent descent. Researchers have developed DP techniques for
this context as well (Huang, Mitra, and Vaidya 2015). While
such algorithms are well-suited for contexts such as fed-
erated learning, where the model parameters are common
knowledge, in meeting scheduling, they would leak the in-
formation of who is meeting with whom, which is usually
the most sensitive information. Therefore, we focus on al-
gorithms where each participant only knows about agents
that it shares constraints with and nothing about the rest of
the problem. In particular, we focus on achieving privacy in
SD-Gibbs using DP techniques. Furthermore, we consider
a stronger local model of privacy (Dwork and Roth 2014),
which ensures the indistinguishability of any two agents.

Contributions. Achieving a scalable, privacy-preserving
DCOP, without a centralized authority is a challenge. We
show that SD-Gibbs may leak information about agent con-
straints during its execution. Further, the iterative nature of
efficient algorithms like SD-Gibbs may lead to a high pri-
vacy loss over the iterations.

Addressing this problem, we develop new differentially
private variants of the SD-Gibbs algorithm. Specifically,
we present (i) P-Gibbs: which uses softmax with temper-
ature to smooth sampling distributions in SD-Gibbs; and
(ii) P-Uniform: which samples values uniformly. Addition-
ally, during computation, we add Gaussian noise to the rel-
ative utility in both algorithms. We then provide a refined

analysis of privacy within the framework of (ε, δ)-DP (Sec-
tions 4.1, 4.2 and 4.3). Our experiments demonstrate our al-
gorithms’ practicality and strong performance for a reason-
able privacy budget, i.e, ε, with SD-Gibbs as the baseline.

Throughout the paper, we omit proofs of some of the re-
sults presented. These proofs are provided in the appendix.

2 Preliminaries
2.1 DCOP
Distributed Constraint Optimization Problem (DCOP) is a
class of problems comprising a set of variables, a set of
agents owning them; and a set of constraints defined over
the set of variables. These constraints reflect each agent’s
preferences. Formally,
Definition 1 (DCOP). A Distributed Constraint Optimiza-
tion Problem (DCOP) is a tuple 〈X ,A,D,F , α〉 wherein,
• X = {x1, . . . , xp} is a set of variables;
• A = {1, . . . ,m} is a set of agents;
• D = {D1, . . . , Dp} is a set of finite domains such that Di

is the domain of xi;
• F is a set of utility functions Fij : Di×Dj → R. Fij gives

the utility of each combination of values of variables in its
scope. Let var(Fij) denote the variables in the scope of
Fij .

• α : X → A maps each variable to one agent.
In this work, w.l.o.g (Yokoo 2012), we assume that p =

m, i.e., the number of agents and the number of variables are
equal. Also, let D = Di = Dj , ∀i, j, i.e., all variables have
the same domain. The total utility in DCOP, for a complete
assignment X = {xi = di| ∀i}, where di is the assignment
of variable xi, is:

F (X) ,
m∑
i=1

∑
j

Fij(X||D)

 , (1)

where X||D is the projection of X to the subspace on which
Fij is defined. The objective of a DCOP is to find an as-
signment X∗ that maximizes the total utility, i.e., F (X∗) =
maxX∈DF (X).

Constraint Graph In DCOP, each combination of vari-
ables/agents is referred to as a constraint. The utility func-
tions over these constraints quantify how much each agent
prefers a particular constraint. This constraint structure is
captured through a constraint graph.
Definition 2 (Constraint Graph (CG)). Given a DCOP
〈X ,A,D,F , α〉, its constraint graph G = 〈X , E〉 is such
that (xi, xj) ∈ E , ∀j ∈ var(Fij).

A pseudo-tree arrangement has the same nodes and edges
as the constraint graph. The tree satisfies (i) there is a subset
of edges, called tree edges, that form a rooted tree; and (ii)
two variables in a utility function appear in the same branch
of that tree. Such an arrangement can be constructed using a
distributed-DFS (Hamadi, Bessiere, and Quinqueton 1998).

For the algorithms presented in this paper, let Ni refer to
the set of neighbours of xi in CG. Also, let Ci denote the set
of children xi in the pseudo-tree, Pi as the parent of variable
xi, and PPi as the set of pseudo-parents of xi.



Variables Definition

di and d̂i Values in current and previous iteration
d∗i Value in the best complete solution so far
d̄i Best response value

Xi and X̄i Context and best-response context
ti, t
∗
i , t̄
∗
i Time index, best-response and non-best response index

∆i Difference in current and previous local solution of agent i
∆̄i Difference in current best-response solution with previous
Ω Shifted utility of the current complete solution
Ω̄ Shifted utility of the best-response solution
Ω∗ Shifted utility of the best complete solution

Table 1: Variables maintained by each agent xi in SD-Gibbs

Procedure 1: Sampling in SD-Gibbs (Nguyen et al.
2019)

1 ti ← ti + 1; d̂i ← di
2 di ← Sample based on (2)
3 d̄i ← argmaxd′i∈Di

∑
〈xj ,d̄j〉∈X̄i Fij(d

′
i, d̄j)

4 ∆i ←
∑
〈xj ,dj〉∈Xi

[
Fij(di, dj)− Fij(d̂i, dj)

]
5 ∆̄i ←

∑
〈xj ,d̄j〉∈Xi

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
6 Send VALUE(xi, di, d̄i, t

∗
i , t̄
∗
i ) to each xj ∈ Ni

2.2 Sequential Distributed Gibbs (SD-Gibbs)
We now describe Sequential Distributed Gibbs (SD-Gibbs)
as first introduced in (Nguyen et al. 2019). SD-Gibbs uses
the well known Gibbs sampling algorithm (Nguyen et al.
2019, Algortihm 1) to solve a DCOP instance as: (i) A
DCOP, whose solution is one with the maximum utility, can
be mapped to a problem whose solution is one with the max-
imum likelihood; and (ii) A solution with the maximum util-
ity is also a solution with the maximum likelihood.

The authors then map DCOP to a maximum a posteri-
ori (MAP) estimation problem. For this, consider MAP on
a Markov Random Field (MRF). MRF consists of a set of
random variables represented by nodes, and a set of po-
tential functions. Each potential function, represented by
θij(xi;xj), is associated with an edge. Let the graph con-
stituting MRF, with nodes and edges, be denoted by 〈V,E〉.

Let Pr(xi = di;xj = dj) be defined as exp(θij(xi =
di;xj = dj)). Then, the most probable assignment is given
by:

Pr(X) =
1

Z

∏
i,j∈E

eθij(xi,xj) =
1

Z
exp

∑
i,j∈E

θij(xi, xj)

 .
Here, Z is the normalisation factor. This corresponds to the
maximum solution of DCOP if,

F (X) =
∑
i,j∈E

θij(xi, xj).

Sampling We now describe sampling in SD-Gibbs. LetXi

denote agent i’s context, defined as the set consisting of its
neighbors and the value assigned to them. In each iteration,
each agent i samples a value di with the following equation,

Pr(xi|xj ∈ X \ {xi}) = Pr(xi|xj ∈ Ni)

=
1

Z
exp

 ∑
〈xj ,dj〉∈Xi

Fij(di, dj)


(2)

Let, Pi(xi) = {Pr(xi|xj ∈ X \ {xi})|xi = di ∀di ∈
Di}, i.e., Pi represents the SD-Gibbs probability distribution
of each agent i. The relevant notations required for the SD-
Gibbs algorithm are presented in Table 1.

Algorithm The following steps summarize SD-Gibbs. We
present the formal algorithm in the supplement.

S0 The algorithm starts with a construction of the pseudo-
tree and each agent initializing each of their variables,
from Table 1, to their default values. The root then starts
the sampling, as descried in Procedure 1 and sends the
VALUE message (line 6) to each of its neighbors.

S1 Upon receiving a VALUE message, the agent i updates
its current contexts, Xi and X̄i with the sender’s values.
If the message is from agent i’s parents, then the agent
itself samples, i.e., executes Procedure 1. This sampling
stage continues until all the leaf agents have sampled.

S2 Each leaf agent j then sends a BACKTRACK message to
its parent comprising xj ,∆j , and ∆̄j . When the parent
receives the message, it too sends a BACKTRACK mes-
sage to its parent. The process continues until the root
receives the message – concluding one iteration.

S3 To reach a solution, each agent i uses its current (∆i)
and current best-response (∆̄i) local utility differences.
We refer to these differences as relative utilities. Upon re-
ceiving a BACKTRACK message, agent i adds the delta
variables of its children to its own. Consequently, these
variables for the root agent quantify the global relative
utility. Based on this, at the end of an iteration, the root
decides to keep or throw away the current solution.

2.3 Privacy in DCOPs

Privacy in DCOP algorithms comprises the fact that any
given agent’s knowledge about the problem will not be re-
vealed to other agents by the messages exchanged during the
algorithm execution. Privacy definitions relevant to DCOPs
include (Faltings, Léauté, and Petcu 2008): (i) Agent Privacy
which states that no agent should be able to discover the
existence of its non-neighbors; (ii) Topology Privacy which
implies that agents must not learn topological information of
the CG; (iii) Decision Privacy which prevents the discovery
of an agent’s assignments from other agents; and (iv) Con-
straint Privacy which states that no agent must be able to
discover the nature of constraint that does not involve a vari-
able it owns. In this work, we focus on constraint privacy to
ensure privacy of agent preferences. Since absolute privacy
is not an achievable goal (Dwork 2006), we formalise con-
straint privacy in terms of (ε, δ)-DP (Dwork and Roth 2014).



2.4 Differential Privacy
Differential Privacy (DP) is normally defined for adjacent
databases, i.e., databases differing in a single entry. How-
ever, in this instance, not only we want to protect privacy
against external adversaries, but also against curious fel-
low agents. To do so, we consider the local model of pri-
vacy (Dwork and Roth 2014). It is defined on individual en-
tries rather than databases, or in our setting, on individual
agents. Formally, we want our algorithm for any two utility
functions (vectors in Rp) to satisfy the following definition,
from (Dwork and Roth 2014),
Definition 3 (Local Differential Privacy). A randomized
mechanismM : F → R with domain F and range R sat-
isfies (ε, δ)-DP if for any two inputs F, F ′ ∈ F and for any
subset of outputs O ⊆ R we have,

Pr[M(F ) ∈ O] ≤ eε Pr[M(F ′) ∈ O] + δ (3)

Privacy loss, useful for our analysis of DP, is defined as

LoM(F )||M(F ′) = ln

(
Pr[M(F ) = o]

Pr[M(F ′) = o]

)
(4)

Privacy Leakage in SD-Gibbs In SD-Gibbs, constraint
privacy is compromised in the following two ways:

1. By sampling. Each variable value in SD-Gibbs is sam-
pled according to agent i’s utility Fij . As values with
more utility are more likely to be drawn, SD-Gibbs leaks
sensitive information about these utility functions. Fortu-
nately, this stage can be secured by simply making distri-
butions more similar across agents (Section 3).

2. By relative utility ∆. Every leaf agent j in the pseudo-
tree sends its ∆j and ∆̄j to its parent i. The parent agent
adds the values to its ∆i and ∆̄i, respectively, and passes
them on up the tree. The process continues until the val-
ues reach the root. Thus, any intermediate agents, or an
adversary observing ∆, can learn something about j’s
utility even if sampling is private.

These follow by observing what critical information gets
transferred by each agent i in S0-S3. We ignore t∗ and t̄∗
because these are simply functions of utility, i.e., will be pri-
vate by post-processing property once utility are private.

Sensitivity In order to achieve DP, particularly for ∆’s, we
need to bound its sensitivity. Sensitivity is defined as the
maximum possible change in the output of a function we
seek to make privacy-preserving. Formally,
Definition 4 (Sensitivity). Sensitivity, denoted by τ , is the
maximum absolute difference between any two relative util-
ity values ∆ and ∆′, i.e.,

τ = max
∆,∆′

∣∣∆−∆′
∣∣ (5)

3 Differential Privacy in SD-Gibbs
First, typically for DP, we need to ensure full support of the
outcome distribution. Indeed, if Pr[M(D′) = o] = 0 for
some o, the privacy loss incurred is infinite and one cannot
bound ε. It implies that all agents must have the same do-
main for their variables and non-zero utility for each value

within the domain.2 In other words, D1 = D2 = . . . = Dp

and Fij(·, ·) > 0,∀i. Further, in order to bound privacy loss
of the algorithm by a reasonably small ε, we introduce the
following assumption about utility functions.

3.1 Privacy Assumption
Recall the notion of max-divergence, a worst-case analogue
of KL divergence, for two probability distributions P andQ:

D∞(P ||Q) = max
x

(
ln
P (x)

Q(x)

)
. (6)

Absolute continuity is trivially satisfied by the initial as-
sumptions introduced above. With this in mind, we now
present the main privacy assumption.

Assumption 1 (Bounded Sampling Divergence). For any
two agents i and j, with value domains D = Di =
Dj and i 6= j, max-divergence between SD-Gibbs sam-
pling distributions is bounded by a constant Γ∞. Formally,
∀i, j, s.t. i 6= j and ∀Xi, Xj , we have,

D∞(Pi||Pj) ≤ Γ∞. (7)

3.2 Bounding Sensitivity with Assumption 1
We now prove that Assumption 1 leads to bounded sensitiv-
ity for relative utility ∆. Specifically, Claim 1 presents Γ∞
as the maximum difference of sums of utility, for any pair of
agents in SD-Gibbs. Then, Theorem 1 uses this difference to
bound the sensitivity.

Claim 1. In SD-Gibbs, ∀i, j s.t i 6= j and D = Di = Dj ,
from Assumption 1, we have,

max
d∈D

∑
Xi

Fik −
∑
Xj

Fjl

 ≤ Γ∞

Proof. Observe that,

max
d∈D

∑
Xi

Fik −
∑
Xj

Fjl


= max

d∈D
ln

1/Z · exp
[∑

Xi
Fik(d, dk)

]
1/Z · exp

[∑
Xj
Fjl(d, dl)

]


= max
d∈D

ln

(
Pi(xi = d)

Pj(xj = d)

)
≤ Γ∞. (8)

This proves the claim.

Theorem 1. For any two agents i and j, i 6= j, under
Assumption 1, the relative utility sensitivity in SD-Gibbs is
bounded by τ = 2 · Γ∞.

2If any agent has a zero utility for some value, then all agents
must have zero utility, and w.l.o.g., we can simply exclude such
values from all domains.



Proof. We know,

∆i ←
∑

〈xk,dk〉∈Xi

[
Fik(di, dk)− Fik(d̂i, dk)

]
.

For brevity, let Fi(d) represent Fik(d, dk),∀〈xk, dk〉 ∈ Xi.
Similarly, Fj(d) represent Fjl(d, dl),∀〈xl, dl〉 ∈ Xj . Now
from (5), let κ =

∣∣∆i −∆j

∣∣, i.e.,

κ =

∣∣∣∣∣∣
∑
Xi

Fi(d)−
∑
Xi

Fi(d̂)−

∑
Xj

Fj(d)−
∑
Xj

Fj(d̂)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
Xi

Fi(d)−
∑
Xj

Fj(d)−

∑
Xi

Fi(d̂)−
∑
Xj

Fj(d̂)

∣∣∣∣∣∣
From Claim 1 and (5), we get, 0 ≤ κ ≤ 2 ·Γ∞, and thus,

τ = 2 · Γ∞.

3.3 Enforcing Assumption 1 with Softmax
In order to enforce Assumption 1, we apply a softmax func-
tion to sampling distributions. Let the softmax distribution
with temperature γ over Pi be given by pi:

pi(xi, γ) =

{
exp(Pi(xi = dk)/γ)∑
dl∈D exp(Pi(xi = dl)/γ)

;∀dk ∈ D

}
(9)

The following claim follows from Assumption 1.
Claim 2. For two probability distributions using softmax, pi
and pj , we have, ∀i, j, ∀d ∈ D and ∀D, s.t. |D| > 1, γ ≥ 1

ln

[
pi(xi = d, γ)

pj(xj = d, γ)

]
≤ 2

γ
= Γ∞

Effect of Softmax. We illustrate the effect of softmax with
the following example. Let Dj = {d1, d2, d3},∀j such
that Pi = [0.8, 0.15, 0.05]. Observe that the distribution
is such that the probability of sampling d1 is significantly
more than others. Now, the corresponding softmax distribu-
tions, from (9), will be: p(·, γ = 1) = [0.50, 0.26, 0.24],
p(·, γ = 2) = [0.41, 0.30, 0.29], and p(·, γ = 10) =
[0.35, 0.33, 0.32]. That is, the softmax distribution is more
uniform than Gibbs’. This implies that an adversary will be
more indifferent towards the domain values the domain val-
ues while sampling. For e.g., d1 and d2 in p(·, γ = 1). Thus
softmax allows us to improve on the privacy leak during
sampling in SD-Gibbs.

4 Preserving Constraint Privacy in DCOP
We now build upon SD-Gibbs to present two novel, scalable
algorithms for DCOPs that preserve constraint privacy.

4.1 P-Gibbs
The difference in P-Gibbs and SD-Gibbs is as follows:
1. P-Gibbs uses softmax function over SD-Gibbs distribu-

tions for sampling di’s, ∀i.
2. P-Gibbs randomly chooses subsets of agents to sample

new values in each iteration. More specifically, in every
iteration, each agent i samples a new value di with prob-
ability q, or uses previous values with probability 1− q.

Providing (ε, δ)-DP for P-Gibbs We first calculate the
privacy parameters of the sampling stage, denoted by εs and
δ, in P-Gibbs. For this, we use an extension of the moments
accountant method (Abadi et al. 2016) for non-Gaussian
mechanisms. Following derivations by Triastcyn and Falt-
ings (2020),

Pr[L ≥ εs] ≤ max
F,F ′

eλDλ+1[M(F )||M(F ′)]−λεs . (10)

Here, L is the privacy loss between any two agents and
Dλ(·||·) is Renyi divergence of order λ ∈ N with a slight
abuse of notation (usingM(·) instead of a distribution im-
posed by it). Unlike Triastcyn and Faltings (2020), we con-
sider the classical DP. Using their notion of Bayesian DP
could improve the bounds, but we leave it for future work.

Also from (Triastcyn and Faltings 2020), we borrow the
notion of privacy cost ct(λ). By trivial manipulation, for
each iteration t,

ct(λ) = max
i,j

λDλ+1

[
pi(d)||pj(d)

]
≤ λΓ∞, (11)

where (11) is due to monotonicity Dλ(P ||Q) ≤
Dλ+1(P ||Q) ≤ D∞(P ||Q), ∀λ ≥ 0. Importantly, this cost
can be further reduced by subsampling agents with proba-
bility q < 1, as we outline next.

Reproducing the steps of the sampled Gaussian mecha-
nism analysis by Triastcyn and Faltings (2020) for our mech-
anism and classical DP, we formulate the following result.
Theorem 2. Privacy cost ct(λ) at iteration t of a sampling
stage of P-Gibbs, with agent subsampling probability q, is

c
(s)
t (λ) = lnEk∼B(λ+1,q)

[
ekΓ∞

]
,

where B(λ, q) is the binomial distribution with λ experi-
ments and probability of success as q, λ ∈ N.

Finally, merging the results, we can compute εs, δ across
multiple iterations as

ln δ ≤
∑T
t=1 c

(s)
t (λ)− λεs

εs ≤ 1
λ

(∑T
t=1 c

(s)
t (λ)− ln δ

) (12)

Figure 1 shows the variation of εs for different values of λ
and Γ∞, with the sampling probability q = 0.1. We observe
that λ has a clear effect on the final εs value, and one should
ideally minimize the bound over λ.

4.2 P-Uniform
We presented P-Gibbs, which uses a softmax function to sat-
isfy Assumption 1 and bound the privacy loss incurred by
sampling. Coupled with Theorem 2 and Eq. 12, it allows us
to quantify privacy parameters εs and δ.

A more “extreme” way to prevent this leakage is to always
sample uniformly, i.e., di ∈ Uniform(Di), for each agent i.
This will provide the least information leakage in the sam-
pling stage of SD-Gibbs. We refer to this private version of
SD-Gibbs as P-Uniform.
Theorem 3. Privacy loss in P-Uniform for sampling d ∈ D
is 0, for any two agents i and j, D = Di = Dj and i 6= j.



Algorithm (εs, δ) (εn, δ) (ε = εs + εn, δ) for T iterations

P-Gibbs (Γ∞, 0) ( τσ

√
2 ln 1.25

δ , δ)
(
T
λ c

(s)
t (λ) + T

λ c
(n)
t (λ)− 1

λ ln δ, δ
)

P-Uniform (0, 0) ( τσ

√
2 ln 1.25

δ , δ)
(
T
λ c

(n)
t (λ)− 1

λ ln δ, δ
)

Table 2: Per-iteration and final (ε, δ) bounds for P-Gibbs and P-Uniform.

Figure 1: Variation of εs with λ

Proof. Observe that the probability of sampling any d ∈ D
will the be the same for any two distinct agents i and j. As a
result, from Eq. 4, the privacy loss incurred is 0.

This implies that εs = 0 in P-Uniform. Further, observe
that the temperature parameter in P-Gibbs may be tuned to
decrease the overall privacy budget (Figure 1). As γ → ∞,
we have pi = pj =⇒ εs → 0. Thus, increasing γ, or
equivalently, decreasing Γ∞, leads to P-Gibbs performing
more similarly to P-Uniform, as more information of SD-
Gibbs sampling distribution is lost.

4.3 Privacy of ∆ in P-Gibbs and P-Uniform
Sections 4.1 and 4.2 deal with the privacy loss occurring due
to sampling in P-Gibbs and P-Uniform, respectively. How-
ever, as aforementioned, the values ∆ and ∆̄ also leak infor-
mation about agents’ constraints. As a result, we must sani-
tize these values so as to fully preserve privacy. We achieve
this by employing the Gaussian noise mechanism (Dwork
and Roth 2014) defined as

MG(∆) , ∆ + Yi,

where Yi ∼ N (0, τ2σ2), τ is the sensitivity and σ is the
noise parameter.

Privacy parameters for the relative utility ∆, denoted by
εn and δ, can be computed either using the basic composi-
tion along with (Dwork and Roth 2014, Theorem A.1) or the
moments accountant (Abadi et al. 2016). The latter can be
unified with the accounting for the sampling stage by using:

c
(n)
t (λ) = lnEk∼B(λ+1,q)

[
ekDλ+1[N (0,τ2σ2)||N (τ,τ2σ2)]

]
.

Table 2 summarises expressions for per-iteration and total
ε values for P-Gibbs and P-Uniform.

5 Experimental Evaluation
We now empirically evaluate the performance of our novel
algorithms, P-Gibbs and P-Uniform, w.r.t. to SD-Gibbs.

Setup pyDCOP (Rust, Picard, and Ramparany 2019) is
a Python module that provides implementations of many
DCOP algorithms (DSA, MGM, MaxSum, DPOP, etc.). It
also allows the implementation of one’s own DCOP algo-
rithm easily, by providing all the required infrastructure:
agents, messaging system, metrics collection, etc. We use
pyDCOP’s implementation of the SD-Gibbs algorithm to
run our experiments. In addition, we also implement our pri-
vacy variants – P-Gibbs and P-Uniform.

Generating Test-cases pyDCOP allows for generating
random test-cases for various problems through its com-
mand line interface using the generate option. We generate
graph-coloring and meeting scheduling problem instances.
These are benchmark problems in DCOP literature. We test
the performance of our algorithms across 25 such randomly
generated problems.

Method We consider the utility given by SD-Gibbs’ solu-
tion as one of the two baselines. The second baseline is the
“one-shot” random assignment, i.e., an algorithm that ran-
domly assigns values to each agent and outputs the utility
based on it. As there is no exchange of information in such
an one-shot assignment, trivially with respect to constraint
privacy, (i) one-shot: ε = 0; and (ii) SD-Gibbs: ε =∞.

Further, note that all these methods, including our P-
Gibbs and P-Uniform, are random algorithms. Hence, for a
fair comparison, we run each benchmark problem 20 times
and use the subsequent average utility for our calculations.

Throughout our experiments we fix: γ = 4, λ =
100 (for sampling), λ = 7 (for noise), q = 0.1, δ =
10−2, and T = 50. The choice of δ is such that δ < 1/m.
We let γ = 4 which implies Γ∞ = 0.5. Finally, we consider
ε ∈ {1, 5, 7.5, 10}, calculated using the results in Table 2.

Solution Quality (SQ) We use the following metric:
Definition 5 (Solution Quality (SQ)). Solution quality SQA
of an algorithm A is defined as

SQA =
UA − UR
US − UR

,

for utilities of A, SD-Gibbs, and one-shot: UA, US , UR.
SQ allows us to place the utility of P-Gibbs and P-

Uniform in the context of SD-Gibbs and one-shot random
solutions. SQA ≈ 1 indicates that utility does not deterio-
rate compared to SD-Gibbs. On the other hand, SQA ≈ 0
means that there is little gain compared to a purely random



Figure 2: Graph Coloring Benchmark

Algorithm ε SQ (mean ± std)

P-Gibbs
5 0.281± 0.143
7.5 0.348± 0.159
10 0.324± 0.192

P-Uniform

1 0.190± 0.119
5 0.322± 0.180
7.5 0.321± 0.153
10 0.341± 0.195

Table 3: Graph coloring, average SQ across problems.

assignment. It is possible that SQA > 1 due to randomness
or privacy noise acting as a simulated annealing.

5.1 Graph-Coloring (GC)
We generate 25 sample graph-coloring problems. The prob-
lems are such that the number of agents/variables lie be-
tween [30, 50) and agents’ domain size between [10, 20).
Each constraint is a random integer taken from (0, 10).

Figure 2 gives SQ per problem instance, per ε. Table 3
provides SQ scores averaged across all problems. For both
algorithms, the average SQ improves between the minimum
and the maximum privacy budgets, although not evenly
across the range. Overall, private SQ is evidently lower in
this benchmark. However, since it is the first method of its
kind, to the best of our knowledge, we believe it is still a
strong result, and future work will improve the performance.

5.2 Meeting Schedule (MS)
We generate 25 sample meeting scheduling problems. The
problems are such that the number of agents/variables lie
between [1, 50) with number of slots, i.e., domain for each
agent randomly chosen from [50, 100). Each constraint is a
random integer taken from (0, 100), while each meeting may
occupy [1, 5] slots randomly. Figure 3 gives the comparison.

Analogously to the graph-coloring example, Figure 3 pro-
vides SQ scores per problem, with different plots for each ε,
and Table 4 average SQ over all problems. Notably, both
methods perform nearly as well as SD-Gibbs.

In this problem, performance is very strong and there
is virtually no loss of utility. The average SQ increases
only marginally with the privacy budget, which could be at-
tributed to the fact that the SQ is high to begin with.

Figure 3: Meeting Scheduling Benchmark

Algorithm ε SQ (mean ± std)

P-Gibbs
5 0.973± 0.0513
7.5 0.973± 0.051
10 0.975± 0.0498

P-Uniform

1 0.979± 0.0475
5 0.985± 0.0372
7.5 0.987± 0.0373
10 0.990± 0.0328

Table 4: Meeting scheduling, average SQ across problems.

In both problems, P-Gibbs and P-Uniform perform very
similarly, which is not intuitive at a first glance. However,
we can attribute this behavior to the following fact. For equal
values of ε, P-Uniform adds less noise in ∆, thereby allevi-
ating the lack of information in the sampling stage.

Discussion. We believe that the improved performance of
our privacy variants in MS over SD-Gibbs is because the
Gibbs sampling in SD-Gibbs assumes statistical indepen-
dence of the variables. This is given in random GC instances
but not in MS. Thus, the performance of SD-Gibbs is not
significantly better than our privacy variants in MS. Our
variants also outperform SD-Gibbs in some cases (Figure
3) which can be attributed to the noise added which acts as
simulated annealing.

6 Conclusion

In this paper, we address the problem of privacy-preserving
distributed constraint optimization. We employ a rigorous
standard of differential privacy to guarantee constraint and
utility privacy for agents. As we use the local model of DP,
our approach protects not only against external adversaries
but also against other agents within the same system.

We propose two novel, private DCOP algorithms based on
SD-Gibbs. For these methods, we perform theoretical pri-
vacy analysis and experimental evaluation on such bench-
mark problems as graph coloring and meeting scheduling.
Our experiments demonstrate that the developed techniques
can achieve strong privacy guarantees while maintaining
high utility, especially in meeting scheduling problems.



References
Abadi, M.; Chu, A.; Goodfellow, I.; McMahan, H. B.;
Mironov, I.; Talwar, K.; and Zhang, L. 2016. Deep learning
with differential privacy. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 308–318.

Brito, I.; Meisels, A.; Meseguer, P.; and Zivan, R. 2009.
Distributed constraint satisfaction with partially known con-
straints. Constraints 14(2): 199–234.

Damle, S.; Faltings, B.; and Gujar, S. 2019. A Truthful,
Privacy-Preserving, Approximately Efficient Combinatorial
Auction For Single-minded Bidders. In Proceedings of the
18th International Conference on Autonomous Agents and
MultiAgent Systems, 1916–1918.

Dwork, C. 2006. Differential Privacy. In 33rd Interna-
tional Colloquium on Automata, Languages and Program-
ming, part II (ICALP 2006), volume 4052 of Lecture Notes
in Computer Science, 1–12. Springer Verlag. ISBN 3-540-
35907-9. URL https://www.microsoft.com/en-us/research/
publication/differential-privacy/.

Dwork, C.; McSherry, F.; Nissim, K.; and Smith, A. 2006.
Calibrating noise to sensitivity in private data analysis. In
Theory of cryptography conference, 265–284. Springer.

Dwork, C.; and Roth, A. 2014. The Algorithmic Founda-
tions of Differential Privacy. Theoretical Computer Science
9(3-4): 211–407.
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Algorithm 1: Sequential Distributed Gibbs (Nguyen
et al. 2019)

1 Create pseudo-tree
2 Each agent xi calls INITIALIZE()

Procedure 1: INITIALIZE() (Nguyen et al. 2019)

1 di ← d̂i ← d∗i ← d̄i ← ValInit(xi)
2 Xi ← X̄i ← {(xj ,ValInit(xj))|xj ∈ Ni}
3 ti ← t∗i ← t̄∗i ← 0

4 ∆i ← ∆̄i ← 0
5 if xi is root then
6 ti ← t∗i ← t̄∗i ← 0
7 SAMPLE()
8 end

Procedure 2: SAMPLE() (Nguyen et al. 2019)

1 ti ← ti + 1; d̂i ← di
2 di ← Sample based on (2)
3 d̄i ← argmaxd′i∈Di

∑
〈xj ,d̄j〉∈X̄i Fij(d

′
i, d̄j)

4 ∆i ←
∑
〈xj ,dj〉∈Xi

[
Fij(di, dj)− Fij(d̂i, dj)

]
5 ∆̄i ←

∑
〈xj ,d̄j〉∈Xi

[
Fij(d̄i, d̄j)− Fij(d̂i, d̄j)

]
6 Send VALUE(xi, di, d̄i, t

∗
i , t̄
∗
i ) to each xj ∈ Ni

A SD-Gibbs
Algorithm 1 presents the complete SD-Gibbs algorithm.

B Proofs
We now restate the results presented in the main paper and
provide their formal proofs.

B.1 Proof of Claim 2
Claim. For two probability distributions using softmax, pi
and pj , we have, ∀i, j, ∀d ∈ D and ∀D, s.t. |D| > 1, γ ≥ 1

ln

[
pi(xi = d, γ)

pj(xj = d, γ)

]
≤ 2

γ
= Γ∞

Proof. Because pi and pj are soft-max distributions, we
have,

pi(xi, γ) =

{
exp(Pi(xi = dk)/γ)∑
dl∈D exp(Pi(xi = dl)/γ)

; ∀dk ∈ D

}
,

pj(xj , γ) =

{
exp(Pj(xj = dk)/γ)∑
dl∈D exp(Pj(xj = dl)/γ)

; ∀dk ∈ D

}
.



Procedure 3: VALUE(xs, ds, d̄s, t
∗
s, t̄
∗
s) (Nguyen

et al. 2019)
1 Update 〈xs, d′s ∈ Xi〉 with (xs, ds)
2 if xs ∈ PPi ∪ {Pi} then
3 Update 〈xs, d′s ∈ X̄i〉 with (xs, d̄s)
4 else
5 Update 〈xs, d′s ∈ Xi〉 with (xs, d̄s)
6 end
7 if xs = Pi then
8 if t̄∗s ≥ t∗sandt̄∗s > max{t∗i , t̄∗i } then
9 d∗i ← d̄i; t̄

∗
i ← t̄∗s

10 else if t∗s ≥ t̄∗sandt̄∗s > max{t∗i , t̄∗i } then
11 d∗i ← d̄i; t

∗
i ← t∗s

12 end
13 SAMPLE()
14 if xi is a leaf then
15 Send BACKTRACK(xi,∆i, ∆̄i) to Pi
16 end
17 end

Procedure 4: BACKTRACK(xs,∆s, ∆̄s) (Nguyen
et al. 2019)

1 ∆i ← ∆i + ∆s; ∆̄i ← ∆̄i + ∆̄s

2 if Received BACKTRACK from all children in this
iteration then

3 Send BACKTRACK(xi,∆i, ∆̄i) to Pi
4 if xi is root then
5 Ω̄← Ω + ∆̄i; Ω← Ω + ∆i

6 if Ω ≥ Ω̄ and Ω > Ω∗ then
7 Ω∗ ← Ω; d∗i ← di; t

∗
i ← ti

8 else if Ω̄ ≥ Ω and Ω̄ > Ω∗ then
9 Ω∗ ← Ω̄; d∗i ← d̄i; t̄

∗
i ← ti

10 end
11 SAMPLE()
12 end
13 end

Note that, Pi and Pj are the probability distributions
through SD-Gibbs sampling. With this, observe,

ln

[
pi(xi = d, ·)
pj(xj = d, ·)

]
≤ ln

 exp(Pi(xi=d)/γ)∑
dl∈D

exp(Pi(xi=dl)/γ)

exp(Pj(xj=d)/γ)∑
dl∈D

exp(Pj(xj=dl)/γ)


≤ ln

[
exp(1/γ(Pi − Pj)))

N1/N2

]
(A2)

Here, N1 =
∑
dl∈D exp(Pi(xi = dl)/γ) and N2 =∑

dl∈D exp(Pj(xj = dl)/γ). Now, in (A2) observe,

1. Both the numerator and denominator in r.h.s of (A2) are
positive.

2. As ln(x) is an increasing function x, this implies that r.h.s
of (A2) is maximum when the numerator is maximum and
denominator is minimum.

3. The difference, Pi(xi = d) − Pj(xj = d), can be at-
most 1. Therefore, numerator in r.h.s of (A2) is at-most
exp(1/γ) = e1/γ .

4. The denominator in r.h.s of (A2) is minimum when N1 is
minimum andN2 is maximum. Note that,N1 is minimum
when Pi(xi = d) = 0,∀d, i.e., minimum N1 = |D|.
But, N2 is maximum when Pj(xj = d) = 1,∀d, i.e.,
maximum N2 = |D| · e1/γ .

5. Using these values in (A2) completes the claim.

B.2 Proof of Theorem 2
Theorem. Privacy cost ct(λ) at iteration t of a sampling
stage of P-Gibbs, with agent subsampling probability q, is

c
(s)
t (λ) = lnEk∼B(λ+1,q)

[
ekΓ∞

]
,

where B(λ, q) is the binomial distribution with λ experi-
ments and probability of success as q, λ ∈ N.

Proof. The result follows by substituting Γ∞ in place of the
ratio of normality distributions in (Triastcyn and Faltings
2020, Theorem 3).

Discussion.

1. The theorem follows from Assumption 1.

2. Unlike the analysis in (Triastcyn and Faltings 2020, Theo-
rem 3), we do not have cLt (λ) and cRt (λ), as well as expec-
tation over the data. This is because we compute the con-
ventional differential privacy bounds, instead of Bayesian
DP, and thus, directly use the worst-case ratio, i.e., Γ∞.

B.3 Proof of Theorem 3
Theorem. Privacy loss in P-Uniform for sampling d ∈ D
is 0, for any two agents i and j, D = Di = Dj and i 6= j.



Proof. For any two agents i and j,D = Di = Dj and i 6= j,
from (4),

L = ln

(
Pr(xi ∈ D)

Pr(xj ∈ D)

)

≤ max
d∈D

ln

(
Pr(xi = d)

Pr(xj = d)

)

≤ ln

(
1/|D|
1/|D|

)
= ln(1) = 0.

This proves the theorem.


