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Abstract

A major impediment to research on improving peer review1

is the unavailability of peer-review data, since any release of2

such data must grapple with the sensitivity of the peer review3

data in terms of protecting identities of reviewers from au-4

thors. We posit the need to develop techniques to release peer-5

review data in a privacy-preserving manner. Identifying this6

problem, in this paper we propose a framework for privacy-7

preserving release of certain conference peer-review data —8

distributions of ratings, miscalibration, and subjectivity —9

with an emphasis on the accuracy (or utility) of the released10

data. The crux of the framework lies in recognizing that a11

part of the data pertaining to the reviews is already avail-12

able in public, and we use this information to post-process13

the data released by any privacy mechanism in a manner that14

improves the accuracy (utility) of the data while retaining the15

privacy guarantees. Our framework works with any privacy-16

preserving mechanism that operates via releasing perturbed17

data. We present several positive and negative theoretical re-18

sults, including a polynomial-time algorithm for improving19

on the privacy-utility tradeoff.20

1 Introduction21

A fair and efficient peer-review process is of utmost impor-22

tance to the development of scientific research. There are,23

however, a large number of challenges in peer review, per-24

taining to its fairness and efficiency. Consequently there is25

an overwhelming desire to “fix” the “broken” peer review26

process (Rennie 2016; McCook 2006). And taking heed to27

this call, there is a growing amount of research on this topic.28

Research on improving peer review suffers from a con-29

siderable handicap – unavailability of data (Balietti, Gold-30

stone, and Helbing 2016; Tomkins, Zhang, and Heavlin31

2017; Squazzoni et al. 2020; Schroter, Loder, and Godlee32

2020). Concealing the identities of reviewers from authors of33

any paper is paramount in most peer review systems. Thus34

releasing any peer review data is fraught with the risk of35

compromising on this privacy. As noted by Balietti (2016):36

“The main reason behind the lack of empirical stud-37

ies on peer-review is the difficulty in accessing data.38

In fact, peer-review data is considered very sensitive,39
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and it is very seldom released for scrutiny, even in an 40

anonymous form.” 41

Although there is a large body of research on the topic 42

of privacy in various domains, not much privacy research 43

directly targets the application of peer review. In an influ- 44

ential recent paper about peer review, Tomkins, Zhang, and 45

Heavlin (2017) highlight the challenges they faced in this 46

respect and their consequent inability to release data: 47

“We would prefer to make available the raw data used 48

in our study, but after some effort we have not been able 49

to devise an anonymization scheme that will simultane- 50

ously protect the identities of the parties involved and 51

allow accurate aggregate statistical analysis. We are 52

familiar with the literature around privacy preserving 53

dissemination of data for statistical analysis and feel 54

that releasing our data is not possible using current 55

state-of-the-art techniques. ” 56

We thus posit the need to develop techniques to help re- 57

lease peer-review data while ensuring that identities of re- 58

viewers of any paper are protected. With this motivation, we 59

focus on the privacy-utility tradeoff in releasing certain con- 60

ference peer-review data. The data to be released comprises 61

distributions of the ratings or miscalibration or subjectivity 62

in the peer-review process. The notion of privacy we con- 63

sider is quite general – our techniques apply to any notion of 64

privacy which operates by perturbing the data, including dif- 65

ferential privacy. We design a framework to improve in this 66

tradeoff by improving the utility (accuracy) while retaining 67

privacy guarantees. 68

Our work relies on the key observation that a non-trivial 69

part of conference peer-review data is already available in 70

the public domain. We design techniques which use this pub- 71

licly available information to post-process the data released 72

by any privacy mechanism. Our approach is guided by the 73

following four desiderata for such a post processing: 74

D1 Under no circumstances should the accuracy decrease 75

after applying the algorithm. 76

D2 Under no circumstances should the privacy guarantee be 77

compromised after applying the algorithm. 78

D3 The algorithm should have a computational complexity 79

polynomial in the number of reviewers and papers.1 80

1In typical conferences, the number of papers per reviewer and



D4 In special cases where an exact answer can be easily ob-81

tained from public data, the algorithm should also return82

the same answer with no error. (This is defined formally83

in Section 4.3.)84

Our technical contributions (detailed in Section 4) to-85

wards this problem are as follows. We use the straightfor-86

ward observation that projecting the (noisy) output of the87

privacy mechanism on the convex hull of all possible true88

values is desirable from the perspective of the desiderata. We89

prove that, however, such a projection is NP-hard (via reduc-90

ing the `-partition problem). We then design a polynomial-91

time computable algorithm which projects the noisy output92

of the privacy mechanism on a convex set containing all93

possible true values, and satisfies the four desiderata listed94

above. As a result of independent interest, we also prove95

that the more obvious approach of projecting on the set of96

all true values (instead of a convex set containing them) can,97

in fact, reduce the accuracy.98

Finally, in Appendix C, we conduct synthetic simula-99

tions, which reveal that our methods can yield considerable100

improvements in the privacy-utility tradeoff as compared101

to standard approaches. The associated code for our al-102

gorithm is available at https://github.com/wenxind/privacy-103

utility-tradeoff-in-peer-review-data.104

2 Related Work105

This work falls in the intersection of two lines of research:106

peer review and privacy.107

Peer review: Peer review is the backbone of scientific re-108

search. There is an overwhelming desire in many domains of109

science and engineering for improving peer review, and con-110

sequently, there are many past works on the topic of either111

evaluating the efficacy of peer review or improving the peer112

review process (Peters and Ceci 1982; Kliewer et al. 2004;113

Bennett, Jagsi, and Zietman 2018; Mavrogenis, Quaile, and114

Scarlat 2020; Bernard 2018; Snodgrass 2006; Scott 1974;115

Lindsey 1988; Douceur 2009; Reinhart 2009). These works,116

however, largely focus on the journal reviewing setup that is117

common in non-computer-science fields, whereas our focus118

is on the conference reviewing setting which is more com-119

mon in computer science.120

The number of submissions to many computer science121

conferences, particularly to machine learning or artificial in-122

telligence conferences, is growing near-exponentially and is123

presently in the several thousands. This rapid growth has124

spurred a considerable amount of recent research on peer125

review in computer science. These works include those on126

handling problems related to reviewer-assignment (Gold-127

smith and Sloan 2007; Charlin and Zemel 2013; Welch128

2014; Stelmakh, Shah, and Singh 2018; Kobren, Saha,129

and McCallum 2019), miscalibration (Roos, Rothe, and130

Scheuermann 2011; Ge, Welling, and Ghahramani 2013;131

Wang and Shah 2019), subjectivity (Noothigattu, Shah,132

and Procaccia 2018), biases (Tomkins, Zhang, and Heavlin133

2017; Stelmakh, Shah, and Singh 2019), strategic behav-134

ior (Balietti, Goldstone, and Helbing 2016; Xu et al. 2019;135

the number of reviewers per paper are both constants (Shah et al.
2018).

Stelmakh, Shah, and Singh 2020) and others (Cabanac and 136

Preuss 2013; Fiez, Shah, and Ratliff 2019; Lawrence and 137

Cortes 2014; Shah et al. 2018; Stelmakh et al. 2020). In par- 138

ticular, as will be detailed later, our work is also useful to- 139

wards releasing data pertaining to miscalibration and subjec- 140

tivity, thereby helping in the understanding and mitigation of 141

these problems. 142

Privacy: Privacy-preserving data analytics has been re- 143

ceiving rapidly increasing attention as the big-data regime 144

emerges. There is a large body of research that investigates 145

formal notion of privacy and quantifies the tradeoff between 146

privacy and utility (see, e.g., Dwork et al. 2006b; Dwork 147

2006; Blum, Ligett, and Roth 2008; Gaboardi et al. 2014; 148

Wang, Ying, and Zhang 2016; Bun, Ullman, and Vadhan 149

2018). Among these studies, differential privacy (Dwork 150

et al. 2006b; Dwork 2006) has become the de facto standard 151

and has been applied to many areas. 152

In this paper, we investigate the privacy-utility trade- 153

off for publishing histograms of peer-review data. Privacy- 154

preserving release of histograms has been a major focus of 155

the literature (Chawla et al. 2005; Dwork et al. 2006a; Hay 156

et al. 2010; Li et al. 2010; Bassily and Smith 2015; Balcer 157

and Vadhan 2019; Abowd et al. 2019). To the best of our 158

knowledge, existing techniques for improving the privacy- 159

utility tradeoff are generally inadequate for the application 160

of peer review since they do not take into account the spe- 161

cial structures in peer-review data. 162

In particular, one special feature of peer-review data is 163

that some specific part of the data such as scores received 164

by papers is already published in its original, non-privacy- 165

preserving form. This provides us an opportunity to utilize 166

the “consistency” with public knowledge. The concept of 167

consistency, with different problem-specific meanings, has 168

been investigated by existing work for privacy-preserving 169

algorithms. Hay et al. 2010 improves accuracy by assuring 170

consistency among answers to different queries. The clos- 171

est work to ours is the privacy-preserving approach for US 172

Census (Abowd et al. 2019), where consistency with public 173

data is a requirement and it is in the form of a set of linear 174

constraints. In contrast, we are not subject to a strict require- 175

ment of consistency, but instead, we exploit consistency as 176

a method to improve accuracy. Additionally, the consistency 177

with public knowledge in our problem is of a more combina- 178

torial nature. As we discuss in the sequel, the idiosyncratic 179

nature of the peer-review setting implies that one can design 180

methods tailored to this application which yield a (consid- 181

erable) improvement in the privacy-utility tradeoff as com- 182

pared to standard privacy mechanisms. 183

Peer review and privacy: An exception is the concur- 184

rent work (Jecmen et al. 2020) which considers releasing 185

the reviewer-paper similarity matrix and source code for the 186

reviewer assignment (whereas in contrast we consider re- 187

leasing a function of the scores given by reviewers to pa- 188

pers). Their approach involves modifying and randomizing 189

the reviewer-paper assignment process and their guarantees 190

pertain to plausible deniability (that is, any reviewer may be 191

assigned to any paper with a probability at most a certain 192

value). On the other hand, we do not modify the peer-review 193

process in any way, and instead use any privacy-preserving 194



data-release mechanism coupled with post processing of the195

data from peer review.196

3 Background and problem setting197

In this section, we provide some background on the peer198

review setting and privacy, and describe our problem setting199

in more detail.200

3.1 Peer review201

We consider a conference peer review setting, where there202

are n reviewers andm papers. We index the papers as [m] =203

{1, 2, · · · ,m} and the reviewers as [n] = {1, 2, · · · , n}.2204

For simplicity we assume that the number of papers re-205

viewed by each reviewer is the same for all reviewers –206

denoted as `, and that the number of reviewers reviewing207

each paper is the same for all papers – denoted as k.3 Conse-208

quently, we have the relation n` = mk. All four parameters209

(n,m, `, k) are public knowledge.210

Each review comprises a real-valued score. We assume211

that all papers and all associated reviews (that is, the set of212

scores received by each paper) are public knowledge (e.g., in213

conferences such as ICLR and others on the OpenReview.net214

review platform). The list of all reviewers is also available215

publicly (such a list is released by many conferences). How-216

ever, importantly, the identity of which reviewer reviewed217

which paper is private.218

We now introduce notation to describe the score given219

in any review. If reviewer j ∈ [n] reviews paper i ∈ [m],220

then we use sij ∈ R to denote the score of this review.221

This score is private in the sense that the identity of the re-222

viewer who gives this score is not publicly available. How-223

ever, for each paper i ∈ [m], the multiset {sij | reviewer j ∈224

[n] reviews paper i} is public.225

This setting can be described by a bipartite graph, as226

shown in Figure 1. The bipartite graph has two disjoint sets227

of vertices, [m] and [n] representing the sets of papers and228

reviewers, repectively. In private data (Figure 1a), an edge229

exists between any vertex (paper) i ∈ [m] and any ver-230

tex (reviewer) j ∈ [n] if reviewer j ∈ [n] reviews paper231

i ∈ [m]. We associate each edge (i, j) with the score sij .232

The edges (and their associated scores) are all private. The233

private data is accessible to the program chairs of the confer-234

ence. In public data (Figure 1b), for each vertex (paper) in235

[m], the weights of the edges connected to it are known pub-236

licly. However, the edges of the graph are not known. Note237

that in both public and private data, identities of papers and238

reviewers are known.239

There are various quantities of interest for release that240

we consider in this work. An intermediate set of terms to-241

wards these quantities is the multiset {wij | reviewer j ∈ [n]242

reviews paper i ∈ [m]} discussed below, which we refer to243

as the set of weights. This multiset can be computed from244

the scores {sij | reviewer j ∈ [n] reviews paper i ∈ [m]}.245

2We follow the standard convention of using [β] to represent
the set {1, 2, . . . , β} for any positive integer β.

3Our work is also applicable to the most general setting in
which different reviewers and/or different papers have different
loads. We discuss this in Section 4.3.
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(a) Private data
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(b) Public data

Figure 1: An illustration of the data (a) available privately to
the program chairs of the conference, and (b) available to the
public under increasingly popular ‘open review’ paradigms
in computer science.

We now discuss three such choices of {wij | reviewer j ∈ 246

[n] reviews paper i ∈ [m]}, and subsequently describe the 247

data we aim to release. 248

• Reviewer ratings. In this case, the mapping from scores 249

to weights is simply the identity mapping: 250

wij = sij . (3.1)

• Miscalibration. Miscalibration pertains to the problem of 251

strictness or leniency of different reviewers, which can 252

govern the fate of papers (Roos, Rothe, and Scheuer- 253

mann 2011; Ge, Welling, and Ghahramani 2013; Wang 254

and Shah 2019). In order to understand the amount of 255

miscalibration, it is instructive to see the difference be- 256

tween the scores given by a reviewer and the scores given 257

by other reviewers for the same papers. To this end, we 258

let wij denote the miscalibration in any individual review 259

(for any paper i by any reviewer j): 260

wij = sij −
1

k − 1

∑
j′ 6=j

sij′ . (3.2)

• Subjectivity. Subjectivity is the problem that different re- 261

viewers place different emphasis on the various criteria 262

when making an overall decision for a paper (Lee 2015). 263

Techniques such as that proposed in Noothigattu, Shah, 264

and Procaccia 2018 can be used to normalize each score 265

in a manner that mitigates the subjectivity. Specifically, 266

the technique in Noothigattu, Shah, and Procaccia 2018 267

uses the public data to transform the score sij associated 268

to each review into a normalized version, say, s̃ij . We can 269

then set wij = s̃ij for every review, and the algorithm 270

in this paper will help release statistics of these normal- 271

ized scores. A second use case we consider is to better 272

understand and investigate the issue of subjectivity, by 273

releasing the amount of subjectivity present in the sys- 274

tem, that is, the aggregate difference of reviewers’ scores 275



and their normalized scores. Concretely in this case, af-276

ter obtaining the normalized scores {s̃ij | reviewer j ∈277

[n] reviews paper i ∈ [m]}, we set wij = sij − s̃ij for278

every review.279

Analogous to the scores sij’s, the weights wij’s are also280

associated to public and private components. We can use the281

same bipartite graphs as in Figure 1 to represent the set-282

ting with weights. In particular, the private data continues283

to include the edges pertaining to which reviewer reviewed284

which paper. The private data also includes the weight wij285

on each edge (i, j) representing the weight that reviewer286

i ∈ [n] gives to paper j ∈ [m]. The private data is de-287

picted in Figure 1a where in this interpretation, the values288

on the edges represent the weights. The public data, as in the289

case of scores, only includes the multiset of weights received290

by any paper, that is, the public data comprises the multi-291

sets {wij |reviewer j ∈ [n] reviews paper i} for every paper292

i ∈ [m]. The public data is depicted in Figure 1b where the293

values on the edges represent the weights.294

It is very important to note the following two properties295

in the transformation of scores sij to weights wij for each296

of the aforementioned choices. First, clearly, given access297

to all private scores, all weights can be computed. Second,298

the public weights (that is, the multisets {wij |reviewer j ∈299

[n] reviews paper i} for every paper i ∈ [m]) can be com-300

puted using only the publicly available score data (that is,301

the multisets {sij |reviewer j ∈ [n] reviews paper i} for ev-302

ery paper i ∈ [m]). This relation between the public (or pri-303

vate) weights and public (or private) scores allows us to in-304

terchange them in the graphs in Figure 1.305

For each reviewer j ∈ [n], let Yj be the set of all306

papers reviewed by reviewer j, that is, Yj = {i ∈307

[m] | reviewer j reviews paper i}. Let yj denote the mean308

weight of reviewer j:309

yj =
1

`

∑
i∈Yj

wij . (3.3)

Note that since the identity of the reviewer in any review is310

private, the values of Yj and yj in general cannot be com-311

puted from the public data.312

Quantity to be released: The quantity of interest is the313

histogram of the mean weights per reviewer, represented by314

the sorted version of the mean-weight vector (y1, y2, ..., yn),315

which we denote by θ∗ = (θ∗1 , θ
∗
2 , ..., θ

∗
n). Then θ∗1 ≤316

... ≤ θ∗n and the multiset (θ∗1 , θ
∗
2 , ..., θ

∗
n) equals the multi-317

set (y1, y2, ..., yn). We call θ∗ the true sorted mean-weight318

vector. According to the applications discussed above, the319

vector θ∗ can either represent the mean scores per reviewer320

or capture the amount of miscalibration, or subjectivity in321

the reviews.322

Our goal is to release θ∗, while ensuring privacy of re-323

viewer identities. When the underlying weights are equal to324

the scores, the sorted mean-weight vector (that is, the his-325

togram of scores) is commonly released by various confer-326

ences (Shah et al. 2018). These are however usually released327

without any privacy considerations, and our work addresses328

privacy-preserving release with high accuracy. Addressing329

the issues of miscalibration and subjectivity is extremely im-330

portant for fair and high-quality peer review (Ge, Welling,331

and Ghahramani 2013; Wang and Shah 2019; Roos, Rothe, 332

and Scheuermann 2011; Lee 2015; Noothigattu, Shah, and 333

Procaccia 2018; Siegelman 1991; Kerr, Tolliver, and Petree 334

1977), and releasing the statistics pertaining to the amount 335

of miscaliabraiton or subjectivity can considerably help both 336

research and policy-design regarding these issues. 337

Publishing histograms of datasets in a privacy-preserving 338

manner has been a central objective in the literature of pri- 339

vacy research (Chawla et al. 2005; Dwork et al. 2006a; Hay 340

et al. 2010; Li et al. 2010; Bassily and Smith 2015; Balcer 341

and Vadhan 2019). Histograms are typically the most fre- 342

quently used statistics in official reports, and more impor- 343

tantly, they form the basis for more complicated statistical 344

analysis. To the best of our knowledge, existing techniques 345

for improving the privacy-utility tradeoff (for histograms or 346

otherwise) are generally inadequate for the application of 347

peer review since they do not take into account the special 348

structures in peer-review data. Our goal is to use the spe- 349

cific type of publicly available data in peer review in order 350

to improve the privacy-utility tradeoff. 351

Finally we note that the high-level ideas behind our pro- 352

posed algorithm are more general and may also be used to 353

improve the utility of the released data for settings beyond 354

the sorted mean-weight vector. We revisit this point later in 355

the paper. 356

3.2 Privacy 357

To protect the privacy of reviewers, we consider privacy- 358

preserving mechanisms that (randomly) perturb the quan- 359

tities of interest. By virtue of the random perturbation, the 360

privacy mechanism makes it hard to infer each individual re- 361

viewer’s scores given to papers from the noisy data. Specif- 362

ically, we consider any privacy mechanism that releases a 363

vector r = (r1, r2, ..., rn) ∈ Rn obtained by randomly per- 364

turbing the sorted mean-weight vector (θ∗1 , θ
∗
2 , ..., θ

∗
n) ∈ Rn. 365

An example of a privacy mechanism is the Laplace mecha- 366

nism, which satisfies the popular notion of differential pri- 367

vacy (Dwork et al. 2016; Dwork and Roth 2014) in which 368

(r1, r2, ..., rn) = (θ∗1 , θ
∗
2 , ..., θ

∗
n) + (η1, η2, ..., ηn). Here 369

η1, η2, . . . , ηn are i.i.d. random variables drawn from a zero- 370

mean Laplace distribution. 371

3.3 Utility (Accuracy) 372

Let t = (t1, · · · , tn) denote the final output (after post- 373

processing) that is released. We measure the utility or ac- 374

curacy of the output in terms of its mean squared error 375

with respect to the true value of the vector θ∗, that is, 376

E
[

n∑
i=1

(θ∗i − ti)2

]
. We say that an (possibly random) out- 377

put t = (t1, ..., tn) is more accurate than another output 378

t′ = (t′1, ..., t
′
n) with respect to θ∗ if 379

E

[
n∑

i=1

(θ∗i − ti)2

]
< E

[
n∑

i=1

(θ∗i − t′i)2

]
. (3.4)

3.4 Goal 380

Our goal is to design algorithms to process the data output 381

by the privacy-preserving mechanism, r, before its actual re- 382



lease in a manner that improves the privacy-utility tradeoff.383

Specifically, we aim to satisfy the four desiderata D1–D4384

listed in Section 1.385

4 Main Results386

4.1 Approach387

We first derive a representation of the set of all possible val-388

ues in the sorted mean-weight vector θ∗ based on the public389

data. For any paper i ∈ [m], we use xi1, xi2, · · · , xik to de-390

note the k weights on edges connected to that vertex (paper)391

in the public data, listed in an arbitrary order. Note that the392

second subscript of xij does not correspond to a reviewer393

identity. The multiset {x11, · · · , xmk} is available publicly,394

and for each i ∈ [m], the multiset {xi1, · · · , xik} is identi-395

cal to the multiset {wij |reviewer j ∈ [n] reviews paper i}.396

Let G be a set of weighted bipartite graphs comprising all397

valid reviewer-paper weights based on the public data, that398

is, each member of G satisfies:399

• It is a bipartite graph, with the vertices in the two parts400

corresponding to papers [m] and reviewers [n].401

• All vertices in [m] are k regular and all vertices in [n] are402

` regular.403

• The k edges incident on any vertex i ∈ [m] have weights404

xi1, xi2,. . . , xik.405

Furthermore, for any graph g ∈ G, any paper i, and any406

reviewer j, we define wij(g) equal to the weight of edge407

between i and j if this edge exists, and wij(g) = 0 other-408

wise. Then the set Θ, that comprises all possible values of409

the sorted mean-weight vector based on public data, is given410

by411

Θ =
{
θ ∈ Rn | θ1 ≤ ... ≤ θn, ∃g ∈ G such that

θj =
1

`

m∑
i=1

wij(g) for all j ∈ [n]
}
.

(4.1)

Note that the true paper-reviewer graph is also a member of412

G and the true sorted weight vector θ∗ ∈ Θ. Throughout413

this section, we consider algorithms based on projecting the414

noisy data on certain sets. To this end, for any set C ⊆ Rn,415

we define the projection of vector r on the set C as416

argmin
θ∈C

n∑
i=1

(θi − ri)2. (4.2)

When the privacy-preserving algorithm perturbs the true417

sorted mean-weight vector θ∗, the resulting noisy mean-418

weight vector r may not lie in the set Θ. It is thus intuitive419

to instead replace the resulting vector with the vector in Θ420

closest to it, that is, to instead output the projection (4.2) of421

the vector r with the choice C = Θ.422

The following result shows that this intuitive approach can423

actually increase the error. We state and prove this result424

concretely in the case of additive Laplace noise, but as seen425

in the proof, the result is much more general.426

Proposition 4.1. There exists a review setting such that the427

true sorted mean-weight vector θ∗, the noisy mean-weight428

vector r obtained by adding Laplace noise with zero mean429

and a fixed, non-zero variance to θ∗, and the output t of the 430

projection (4.2) of r on the set C = Θ, are related as 431

E

[
n∑

i=1

(ti − θ∗i )2

]
> E

[
n∑

i=1

(ri − θ∗i )2

]
, (4.3)

where the expectation is taken with respect to the noise dis- 432

tribution. 433

The proposition implies that using the closest valid vector 434

violates desideratum D1 of not reducing the accuracy. The 435

proof of Proposition 4.1 is given in Appendix D.1. 436

Consequently, in order to ensure desideratum D1 of not 437

reducing the accuracy is met, we project the noisy data onto 438

a convex set that contains Θ. The following proposition 439

(proved in Appendix D.2) indicates that such projection can 440

never harm the accuracy, and is a straightforward application 441

of the fact that projection on to convex sets is non-expansive. 442

Note that projection methods have been used in the litera- 443

ture (Hay et al. 2010; Abowd et al. 2019) and it is known 444

that projection does not decrease accuracy. For complete- 445

ness, we include Proposition 4.2 here as the specific form of 446

such results for our problem. 447

Proposition 4.2. Consider any true sorted mean-weight 448

vector θ∗, and any arbitrary (noisy mean-weight) vector 449

r. Let C be any closed convex set such that Θ ⊆ C. Let 450

t = (t1, ..., tn) be the projection of r on to set C as in (4.2). 451

Then it must be that 452

n∑
i=1

(ti − θ∗i )2 ≤
n∑

i=1

(ri − θ∗i )2. (4.4)

Since proposition 4.2 holds for all r, it follows that if r is 453

obtained by randomly perturbing θ∗, then 454

E

[
n∑

i=1

(ti − θ∗i )2

]
≤ E

[
n∑

i=1

(ri − θ∗i )2

]
. (4.5)

Moreover, for two closed convex sets C1 ⊆ C2 both contain- 455

ing Θ, if we have a projection on C2, then further projecting 456

it on C1 can never increase the error and can possibly de- 457

crease the error. Our goal thus is to project the noisy data 458

on to a (small) convex set that contains all possible true 459

values. 460

4.2 NP-hardness of Projection onto Convex Hull 461

The smallest convex set that contains Θ is the convex hull 462

of Θ. Observe that if we could project on to the convex hull, 463

then it can also be used to improve upon the projection on 464

any other convex set. Specifically, if t is the projection of 465

the perturbed data r on some convex set that contains Θ, 466

and if t′ is the projection of t on convex-hull(Θ), then with 467

an argument identical to that in Proposition 4.2 we have that 468
n∑

i=1

(t′i − θ∗i )2 ≤
n∑

i=1

(ri − θ∗i )2. 469

Consequently, in this section we consider the goal of pro- 470

jecting the noisy data onto the convex hull of Θ. In this case, 471

the final result we will output can be represented as choosing 472

C = convex-hull(Θ) in Equation (4.2). Unfortunately, as we 473

show below, projection onto convex-hull(Θ) is NP-hard. 474



Theorem 4.3. When k = ` > 2, m = n and n is a multi-475

ple of `, the problem of projecting noisy data onto convex-476

hull(Θ) is NP-hard.477

We prove this result via reducing the `-Partition prob-478

lem to the projection problem. Given any instance of an `-479

Partition problem, which is a multiset of integers, we can480

construct a conference where each paper has a weight from481

the multiset. We can construct a vector such that the projec-482

tion result can directly answer the `-Partition problem. The483

complete proof of Theorem 4.3 is provided in Appendix D.3.484

4.3 An Efficient Algorithm485

In this section, we present an algorithm that meets the four486

desiderata D1–D4 listed in Section 1. Since we cannot effi-487

ciently project on to the convex hull of Θ, we must make do488

with a larger convex set that contains Θ. We use desidera-489

tum D4 for guidance on what constitutes a reasonably small490

set and associated projection.491

Axioms defining desideratum D4 Recall that desidera-492

tum D4 says that the algorithm should automatically recover493

the ground truth when the structure of the public data is sim-494

ple enough. More concretely, we benchmark any algorithm495

using the following axiomatic properties:496

A1 When all weights are identical, the projection should re-497

sult in a vector whose entries are all the same as the498

weight. Formally, if xij = z ∀i ∈ [m], j ∈ [k] for499

some z, then the output t of the algorithm must be500

t1 = t2 = · · · = tn = z.501

A2 When ` = 1 (that is, each reviewer reviews 1 pa-502

per), the projection of any noisy data should result in503

a sorted vector of all weights. Formally, if ` = 1 then504

the output t of the algorithm must be (t1, t2, · · · , tn) =505

sorted(x11, x21, · · · , xn1).506

A3 When all but one papers have all zero weights, the507

projection of any noisy data should result in a sorted508

vector with (n − k) zero entries and the remain-509

ing entries equal to 1
` of the weights for the pa-510

per that does not have all-zero weights. Formally, if511

xij = 0 ∀i ∈ {2, . . . ,m}, j ∈ [k], then the out-512

put t of the algorithm must be (t1, t2, · · · , tn) =513

sorted(x11

` ,
x12

` , · · · ,
x1k

` , 0, · · · , 0).514

High-level idea behind the algorithm The main idea be-515

hind our algorithm comprises the following three steps:516

I. From the public data, take all tuples of size ` contain-517

ing weights from different papers into consideration.518

II. Use them to construct lower and upper bounds on ev-519

ery entry of (the unknown vector) θ∗.520

III. Project the noisy data r on the set specified by the521

aforementioned lower and upper bounds, along with522

any other problem-specific (convex) constraints.523

As one can intuitively see, these three steps imply a pro-524

jection of the noisy data on a convex set which includes all525

valid values of the true data, and hence from Proposition 4.2526

it will not reduce the utility (desideratum D1). Moreover, the527

entire algorithm uses only the public data along with the vec-528

tor r released by the privacy mechanism, and hence does not529

compromise privacy (desideratum D2). The idea is general530

enough to be applied to many forms of the noisy data, and 531

in what follows, we apply it to release the histogram of the 532

true sorted mean-weight vector. Of course, the devil lies in 533

the details of how these steps are executed, which will deter- 534

mine whether the designed algorithm meets desiderata D3 535

and D4. 536

Full algorithm description We now describe our algo- 537

rithm in full detail. (We also provide an illustrative exam- 538

ple in Appendix B.) Recall that we use xi1, xi2, · · · , xik to 539

represent the k weights on edges connected to any vertex 540

(paper) i ∈ [m] in the public data. Note that since reviewer 541

identities are not available publicly, the second subscript “j” 542

in “xij” has no particular meaning other than capturing the 543

fact that each paper has k weights. We use matrix X to dis- 544

play all the weights in the public data where row i column j 545

of X has value xij . 546

I. Valid weight tuples We define a weight tuple as a mul- 547

tiset of ` real values. We say that a tuple is a valid weight 548

tuple if it consists of ` weights from distinct papers. In other 549

words, a valid weight tuple contains ` entries of matrix X 550

where no two entries are from the same row in X . We com- 551

pute Ω′ as the list of all valid weight tuples. In other words, 552

Ω′ contains all the possible weight tuples given by a re- 553

viewer. We sort the list Ω′ based on the mean weight of the 554

weight tuples (breaking ties arbitrarily), and henceforth use 555

the notation Ω for this sorted list. 556

II. Lower and upper bounds We now compute lower and 557

upper bounds on each entry of θ∗ based only on the public 558

data. We create a graph G which has all weight tuples in Ω 559

as its vertices. Since each weight tuple in Ω corresponds to a 560

vertex in graphG, we use the terms “weight tuples in Ω” and 561

“vertices in G” interchangeably. There is an edge between 562

two vertices if the two weight tuples do not contain weights 563

corresponding to the same entry in X . Then for each vertex, 564

we define its left chain and right chain as follows. Recall 565

that Ω is a sorted list and all of its entries, which are weight 566

tuples, are totally ordered. We use the indices of the tuples 567

(vertices) in this ordering for the following definitions. 568

Definition 4.4. For any vertex ν in G, a left chain (resp. 569

right chain) of ν is a simple path in G from ν to another ver- 570

tex such that the indices of the vertices in this path decrease 571

(resp. increase) starting from ν. 572

We also define the length of a chain to be the number of 573

vertices in the chain. For each vertex, we compute the length 574

of its longest left chain and the length of its longest right 575

chain using dynamic programming. To compute the length 576

of the longest left chain of a vertex ν in G, we check the 577

length of the longest left chain of all its neighbors at lower 578

indices. Then the length of the longest left chain of ν is 579

the maximum of these neighbors’ longest left chain lengths 580

plus one. Similarly, to compute the length of the longest 581

right chain of ν, we check the length of the longest right 582

chain of all its neighbors at higher indices. The length of the 583

longest right chain of ν is the maximum of its neighbors’ 584

longest right chain lengths plus one. We store the length of 585

the longest left and right chain of each vertex for subsequent 586

use in the algorithm. 587

The algorithm to compute a lower bound on θ∗i for each 588



Algorithm 1: Computation of lower bounds
Input: matrix X of weights, sorted list of weight tuples Ω
Initialize i = 1, set w ∈ R` as the first tuple in Ω, and all
entries of X are unmarked.
while i ≤ n do

for each weight in the tuple w, find its corresponding
entry in matrix X and mark the entry
if length of tuple w’s longest left chain ≥ i and
number of unmarked entries on each row of
X ≤ n− i then

lower bound on θ∗i = mean of all entries of tuple w
i+ = 1

end if
set w as the next tuple in Ω

end while

i ∈ [n] is presented in Algorithm 1. In more detail, the al-589

gorithm uses two criteria to determine if mean of a weight590

tuple is a lower bound on θ∗i . The criteria are591

C1 The longest left chain of the tuple has length at least i.592

C2 In X , after we mark the ` weights from each tuple con-593

sidered so far, each row has at most n − i unmarked594

entries.595

The intuition is as follows. We call the n weight tuples596

that compute θ∗ the true weight tuples. The true weight tu-597

ple with mean θ∗i must have i−1 weight tuples with smaller598

or equal mean to θ∗i . No two reviewers give the same weight599

so no two true weight tuples contain weights from the same600

entry in X . Thus, criterion C1 is a necessary condition for601

a weight tuple to be the true weight tuple that computes θ∗i .602

In addition, there are n − i entries in θ∗ whose values are603

no smaller than θ∗i . Since no two true weight tuples contain604

weights from the same paper, each paper can have at most605

n− i unused weights. Therefore, each row ofX cannot have606

more than n− i unmarked entries. Thus, criterion C2 is nec-607

essary for all weights to be assigned among the reviewers.608

For each entry i ∈ [n], we choose the valid weight tuple609

with the smallest mean that satisfies criteria C1 and C2 as610

the lower bound on θ∗i . Hence, it is a valid lower bound.611

The computation of the upper bounds is analogous to that612

of lower bounds, and is presented in Appendix A in detail.613

III. Projection Let Li denote the lower bound we com-614

pute on θ∗i and Ui denote the upper bound we compute on615

θ∗i in part II above. The final output of our algorithm is the616

solution to the following optimization problem:617

argmin
t∈Rn

n∑
i=1

(ηi − ti)2 such that Li ≤ ti ≤ Ui∀i ∈ [n],

n∑
i=1

ti =
1

`

m∑
i=1

k∑
j=1

xij , t1 ≤ t2 ≤ · · · ≤ tn.

(4.6)

This convex optimization problem with a quadratic objec-618

tive and 2n linear constraints can be solved efficiently.619

Remark 4.5 (Extension to non-uniform paper and reviewer620

loads). Our algorithm easily extends to the setting of non-621

uniform reviewer and paper loads. First, if the papers are 622

reviewed by different number of reviewers, the algorithm 623

above continues to work. Now if the reviewers review dif- 624

ferent numbers of papers, then we make the following mod- 625

ification to the algorithm. Let L ⊂ [m] denote the set of all 626

paper loads on the reviewers, that is, ` ∈ L ⇐⇒ there 627

is a reviewer who reviews exactly ` papers. Then the set 628

Ω′ computed in the first step of the algorithm includes all 629

weight tuples of size ` for every ` ∈ L. The remainder of 630

the algorithm remains identical to that described above. The 631

proof of correctness in these settings follows from the same 632

arguments (given in Appendix D.5) as those for the setting 633

of uniform reviewer and paper loads. The algorithm contin- 634

ues to have a computational complexity that is polynomial 635

in n andm (where we continue to assume that the maximum 636

reviewer and paper loads are constants (Shah et al. 2018)). 637

Guarantees of Our Algorithm In this section, we evalu- 638

ate our algorithm with respect to the four desiderata listed in 639

Section 1. We first prove the correctness of the algorithm in 640

terms of projection on to an appropriate set. 641

Theorem 4.6. The algorithm projects noisy data onto a con- 642

vex set that contains all true values. 643

The proof of this theorem is given in Appendix D.5. This 644

result, combined with Theorem 4.2, guarantees that our al- 645

gorithm does not increase the error. Thus, our algorithm sat- 646

isfies desideratum D1. In addition, since our algorithm uses 647

only the public data for post processing, it satisfies desider- 648

atum D2. We now discuss the computational complexity of 649

our algorithm. 650

Theorem 4.7. The algorithm has polynomial time complex- 651

ity in the number of reviewers and the number of papers. 652

Our algorithm thus satisfies desideratum D3. The proof of 653

this theorem is given in Appendix D.6. To be clear, while the 654

algorithm is polynomial time in n andm, it is exponential in 655

`. In practice ` is usually a small constant (Shah et al. 2018). 656

We finally visit desideratum D4 – of returning an exact 657

answer when it can easily be deduced from public data. 658

Theorem 4.8. The algorithm satisfies the axiomatic proper- 659

ties A1, A2 and A3 defined in Section 4.3. 660

The proof of this theorem is given in Appendix D.7. We 661

have thus shown that our proposed algorithm meets all four 662

desiderata D1–D4. 663

5 Conclusion 664

We take the first steps towards designing methods for 665

privacy-preserving release of peer-review data, and posit the 666

need for much more research on this topic to address the 667

important challenge of improving peer review. While we 668

addressed a certain type of peer-review data, it is of the- 669

oretical and practical interest to enable privacy-preserving 670

release of more peer-review data such as properties of the 671

reviewer graph, reviewer bids, and other functions of the 672

scores. Moreover, it is of interest to design methods that can 673

utilize data from multiple conferences, while preserving the 674

privacy in each conference, for improving the peer-review 675

process in any subsequent conference. 676
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861

Appendices862

A Algorithm for Upper Bounds863

The computation of upper bounds is similar to the method-864

ology in Algorithm 1 from Section 4.3 and is presented in865

Algorithm 2. The two criteria we use to determine if mean866

of a tuple is an upper bound on θ∗i are867

C3 The longest right chain of the tuple has length at least868

n− i+ 1.869

C4 In X , after we mark the ` weights from each tuple con-870

sidered so far, each row has at most i − 1 unmarked871

entries.872

Algorithm 2: Computation of upper bounds
Input: matrix X of weights, sorted list of weight tuples Ω
Initialize i = 1, set w ∈ R` as the first tuple in Ω, and all
entries of X are unmarked.
while i ≥ 1 do

for each weight in the tuple w, find its corresponding
entry in matrix X and mark the entry
if length of tuple w’s longest right chain ≥ n− i+ 1
and number of unmarked entries on each row of
X ≤ i− 1 then

upper bound on θ∗i = mean of all entries of tuple w
i− = 1

end if
set w as the previous tuple in Ω

end while

B An Example873

In this section, we illustrate our algorithm (described in Sec-874

tion 4.3) by means of an illustrative example.875

Consider a case where n = m = 4, ` = k = 3. Let 3876

papers among the 4 have all 0 weights and the fourth paper877

has weights 1, 2 and 3. In this example, we can infer that878

(θ∗1 , θ
∗
2 , ..., θ

∗
n) = (0, 1

3 ,
2
3 , 1) regardless of assignment. This879

example reflects axiomatic property A3 presented in Sec-880

tion 4.3. We show that our algorithm for computing bounds881

indeed results in a convex set that contains only the vector882

(0, 1
3 ,

2
3 , 1). And thus the projection of any noisy data onto883

this convex set results in (0, 1
3 ,

2
3 , 1).884

First, we visualize the matrix X as885

paper 1 : 011 012 013

paper 2 : 021 022 023

paper 3 : 031 032 033

paper 4 : 141 242 343.

886

The subscripts indicate the entries of the weights887

in X . Some elements in Ω′ are: (011, 021, 031),888

· · · , (013, 023, 033), (011, 012, 141), · · · , (013, 023, 141),889

(011, 012, 242), · · · , (011, 012, 343). After we sort Ω′ based890

on the mean of the weight tuples, we get Ω where the first891

27 tuples have mean 0, followed by 27 tuples with mean892
1
3 , 27 tuples with mean 2

3 , and 27 tuples with mean 1. We893

construct graph G in which for instance, there is an edge894

between the tuples (011, 021, 031) and (012, 022, 032) since 895

all six weights in these two tuples correspond to different 896

entries in X . On the other hand, there is no edge between 897

the tuples (011, 021, 141) and (012, 022, 141) because they 898

both contain weight 141. 899

The first tuple in Ω meets both the criteria so lower bound 900

on θ∗1 is mean of the first tuple, which is a tuple with mean 901

0. Therefore, lower bound on θ∗1 is 0. Without loss of gener- 902

ality, the first tuple is (011, 021, 031) and we mark the corre- 903

sponding entries in X . Now the matrix X can be visualized 904

as follows (where we mark any entry when we need to): 905

paper 1 : ��011 012 013

paper 2 : ��021 022 023

paper 3 : ��031 032 033

paper 4 : 141 242 343.

906

To compute a lower bound on θ∗2 , we start from the second 907

tuple in Ω. Since there are 27 tuples that have mean zero, the 908

second tuple still has mean zero. However, we do not choose 909

any tuple that has mean zero due to criterion C2 from the 910

algorithm. Choosing any (0, 0, 0) tuple leaves all 3 entries 911

of row 4 in X unmarked, and thus will not leave row 4 with 912

at most 2 unmarked entries. Therefore, we will only stop at 913

the first tuple that has mean 1
3 . Without loss of generality, 914

we choose tuple (011, 021, 141) and mark the corresponding 915

entries in X . This will leave the matrix X as 916

paper 1 : ��011 ��012 ��013

paper 2 : ��021 ��022 ��023

paper 3 : ��031 ��032 ��033

paper 4 : ��141 242 343.

917

For a similar reason, we do not choose any tuple that has 918

mean 1
3 to be a lower bound on θ∗3 as it would not leave row 919

4 ofX with at most 1 unmarked entry. So we choose the first 920

tuple that has mean 2
3 and a lower bound on θ∗3 is 2

3 . Lastly, a 921

lower bound on θ∗4 is computed using the first tuple that has 922

mean 1. 923

Now we can look at the computation of upper bounds us- 924

ing the proposed algorithm. Upper bound on θ∗4 is taken as 925

mean of the last tuple, which is a tuple with mean 1. There- 926

fore, an upper bound on θ∗4 is 1. In addition, we mark two 927

entries of weight 0 and one entry of weight 3. Without loss 928

of generality, we mark entries 011, 021, 343. Now the matrix 929

X can be visualized as 930

paper 1 : ��011 012 013

paper 2 : ��021 022 023

paper 3 : 031 032 033

paper 4 : 141 242 ��343.

931

To compute an upper bound on θ∗3 , we start from the second 932

to last tuple in Ω. Since there are 27 tuples that have mean 933

1, the second to last tuple still has mean 1. However, we do 934

not choose any tuple with mean 1 due to criterion C3 from 935

the algorithm. Any (0, 0, 3) tuple does not have a right chain 936

of length at most 2 because all tuples with value (0, 0, 3) 937

are not connected due to the uniqueness of the weight 3. 938

Therefore, we will only stop at the first tuple that has mean 2
3 939

as it has a right chain of length 2. Since we have encountered 940

all combinations of (0, 0, 3), the matrix X after we choose a 941

tuple (0, 0, 2) becomes 942



paper 1 : ��011 ��012 ��013

paper 2 : ��021 ��022 ��023

paper 3 : ��031 ��032 ��033

paper 4 : 141 ��242 ��343

.943

For a similar reason, we do not choose any tuple that has944

mean 2
3 to be an upper bound on θ∗2 as it would not have a945

right chain of length at least 3. So we choose the first tuple946

we encounter that has mean 1
3 and an upper bound on θ∗2 is947

1
3 . Lastly, an upper bound on θ∗1 is computed using the first948

tuple that has mean 0.949

Thus, the bounds on θ∗ = (θ∗1 , θ
∗
2 , ..., θ

∗
n) are 0 ≤ θ∗1 ≤ 0,950

1
3 ≤ θ∗2 ≤ 1

3 , 2
3 ≤ θ∗3 ≤ 2

3 and 1 ≤ θ∗4 ≤ 1. Along with the951

conditions that θ∗1 + θ∗2 + θ∗3 + θ∗4 = 2 and θ∗1 ≤ θ∗2 ≤ θ∗3 ≤952

θ∗4 , the only possible value of θ∗ is (0, 1
3 ,

2
3 , 1). Thus the out-953

put of our algorithm is the singleton set {(0, 1
3 ,

2
3 , 1)}. Pro-954

jection of any data to the convex set {(0, 1
3 ,

2
3 , 1)} results in955

(0, 1
3 ,

2
3 , 1), which is consistent with axiomatic property A3.956

C Simulations957

In this section, we conduct synthetic simulations to evaluate958

the performance of our algorithm. We synthetically gener-959

ate a conference review setting in one of several ways as960

described below. In each of the settings, the number of re-961

viewers equals the number of papers, and each reviewer re-962

views 2 papers and each paper is reviewed by two reviewers.963

The assignment of reviewers to papers is done uniformly at964

random subject to given load constraints. The weight given965

by any reviewer to any reviewed paper is drawn from a beta966

distribution. For preserving privacy, we consider the com-967

mon method of adding i.i.d. Laplace noise (with mean zero968

and variance 2) to each component of the true sorted mean-969

weight vector.970

We evaluate the following three methods of releasing the971

sorted mean-weight vector, which includes our proposed al-972

gorithm and two baselines:973

• Noisy where Laplace noise is added but no post-974

processing is performed;975

• Baseline projection where the noisy data is post-976

processed via projecting onto a convex set which con-977

strains the sum of all entries, the value of each entry978

in terms of the range of weights (0 to 1), and imposes979

a monotonicity constraint; We project on the set {t ∈980

Rn|0 ≤ ti ≤ 1∀i ∈ [n],
n∑

i=1

ti = 1
`

m∑
i=1

k∑
j=1

xij , t1 ≤981

t2 ≤ · · · ≤ tn}.982

• Our algorithm where the noisy data is post-processed via983

our algorithm described in Section 4.984

The simulations compute the mean squared error between985

the true sorted mean-weight vector θ∗ and the output from986

each of these three methods, that is,
∑n

i=1(ti − θ∗i )2 where987

t is the output of any of these algorithms. Note that in the988

figures, the error bars (standard error of the mean) are plotted989

but not visible in most cases since they are too small.990

We now describe the method for generating the weights991

in each simulation, and refer the reader to the corresponding992

plots. Note that the y-axes (representing the mean squared993

error) on each of the plots is on a logarithmic scale.994

• In Figure 2a—2e, the number of reviewers ranges from 995

10 to 50. The weights are all i.i.d. and are generated from 996

the beta distribution specified in the corresponding sub- 997

caption. 998

• In Figure 2f, the number of reviewers is fixed at 10. On 999

the x-axis, we vary a parameter a ∈ {0.5, 1, . . . , 10}. 1000

For each value of a, we draw all weights i.i.d. from the 1001

beta(a, a) distribution. 1002

• In Figure 2g, we again vary the number of reviewers n 1003

on the x-axis. For any paper i ∈ [n], one weight is gen- 1004

erated from beta(1, i) and the other weight is generated 1005

from beta(2, i) independently. 1006

• In Figure 2h, whenever any paper i ∈ [m] is reviewed by 1007

reviewer j ∈ [n], the weight of that review is generated 1008

from beta(i, j). 1009

All in all, these simulations reveal that our algorithm can 1010

lead to a multi-fold improvement in the utility (accuracy) 1011

while not compromising the privacy. 1012

D Proofs 1013

We present proofs of all the claimed results. 1014

D.1 Proof of Proposition 4.1 1015

We prove the proposition using a counter example. Assume 1016

the true value θ∗ = 0 and the set of all possible values Θ = 1017

{−4,−2, 0, 2, 4}. The noisy data r = θ∗ + η where η is 1018

a Laplace random variable with probability density function 1019

η(x) = 0.5e−|x|. 1020

Without projection, the expected error incurred by the 1021

noise is
∫∞
−∞ 0.5e−|x|x2dx = 2. But if we project the 1022

noisy data on the set Θ and get result t, the expected er- 1023

ror after the projection is computed as 16
∫ −3

−∞ 0.5e−|x|dx+ 1024

4
∫ −1

−3
0.5e−|x|dx+ 4

∫ 3

1
0.5e−|x|dx+ 16

∫∞
3

0.5e−|x|dx = 1025

2.06896, which is greater than the expected error without 1026

projection. Thus, projecting on the set that contains all true 1027

values could decrease the accuracy of data. 1028

D.2 Proof of Proposition 4.2 1029

It is known that projection on a closed convex set is non- 1030

expansive (Bauschke, Combettes et al. 2011). Since θ∗ re- 1031

sults from a valid assignment, it is contained in Θ. Therefore 1032

it is contained in any closed convex set that contains Θ. Pro- 1033

jection of r onto any such convex set will not increase its 1034

squared error from θ∗. Therefore, proposition 4.2 holds. 1035

D.3 Proof of Theorem 4.3 1036

We will prove the NP-hardness by reducing the `-Partition 1037

problem, which is NP-hard (Babel, Kellerer, and Kotov 1038

1998), to the problem of projecting noisy data onto convex 1039

hull of Θ. The `-Partition problem where ` > 2 is defined 1040

as follows. 1041

Definition D.1. `-Partition problem: Given a multi-setW = 1042

{w1, w2, ..., wn} of n non-negative integers where n is a 1043

multiple of `, decide if we can partition W into n
` subsets 1044

such that each subset has size ` and the sums of all subsets 1045

are the same. 1046
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Figure 2: Simulation results. The y-axes of all plots are on a logarithmic scale.

Consider any instance of the `-Partition problem with1047

W = {w1, w2, ..., wn}, where wi ≥ 0 and n is a multiple of1048

`. Now we construct a peer-review dataset where there are1049

n reviewers and n papers, each reviewer reviews ` papers1050

and each paper receives ` reviews. Note that the number of1051

reviewers is the same as the number of elements inW . Let1052

each paper i has weight wi and ` − 1 zero weights, and a1053

denote the average of all elements inW , i.e.,1054

a =
1

n

n∑
i=1

wi. (D.1)

Let v = (0, ..., 0, a, ..., a) be a vector of n entries whose last1055
n
` entries all have value a. Let V = W ∪ {0, ..., 0} be the1056

multiset containing all values of W and n · (` − 1) zeros.1057

Then the projection problem is to project v onto the convex1058

hull of Θ defined for this peer-review dataset.1059

The reduction from the `-Partition problem to the projec-1060

tion problem constructed above is as follows. If the solution1061

to the projection problem is v itself, we return True for the 1062

`-Partition problem; otherwise we return False. 1063

We first prove the correctness of the reduction. Suppose 1064

W can be `-partitioned into n
` subsets of equal sums. Then 1065

we can partition V into subsets of size ` where these subsets 1066

are the subsets that give the `-partition of W and subsets 1067

that consist of ` zeros. By Lemma D.2 below, this partition 1068

of V gives a valid assignment for the peer-review problem, 1069

and thus v = (0, ..., 0, a, ..., a) corresponds to a valid as- 1070

signment. Therefore, the projection of v is itself. The proof 1071

of Lemma D.2 is presented in Section D.4. 1072

Lemma D.2. In the setting described above, any `-partition 1073

of the n · ` weights in V , i.e., any partition of V into subsets 1074

of size `, can be interpreted as a valid assignment such that 1075

subset i corresponds to the weights from reviewer i given to 1076

` distinct papers. 1077

Next, suppose that the projection of v is itself. We show 1078

thatW can be `-partitioned into subsets of equal sums. We 1079

first claim that v must correspond to a valid assignment it- 1080



self. To see this, suppose v = (0, ..., 0, a, ..., a) is a con-1081

vex combination of some sorted mean weight vectors. Then1082

these vectors must all have value a for their last n
` entries1083

since each of these mean weight vector is sorted. Due to1084

the sum constraint, these mean weight vectors have to be1085

(0, ..., 0, a, ..., a). Next we note that in the assignment given1086

by v, each reviewer who has an average weight of a must1087

give ` weights with values from W due to the pigeonhole1088

principle. Therefore, the n
` subsets each of which consists1089

of weights given by one of the last n
` reviewers form an `-1090

partition ofW with equal sums.1091

Finally, we prove the efficiency of the reduction. Since1092

the construction of v hasO(n) time complexity and the con-1093

struction of V has O(1) time complexity, the reduction has1094

O(n) time complexity, which is polynomial in the size of1095

the input. Thus, the reduction can be done efficiently, which1096

completes the proof.1097

D.4 Proof of Lemma D.21098

Fix `, we will prove the lemma by induction on n, the num-1099

ber of reviewers, which is the same as the number of papers.1100

Base case: when n = `, every reviewer reviews all papers,1101

so any ` partition of the weights can be validly assigned to1102

reviewers.1103

Inductive hypothesis: suppose when there are fewer than1104

n reviewers for an n > `, every ` partition of the weights1105

forms a valid assignment for reviewers.1106

Consider when there are n reviewers and n papers. With-1107

out loss of generality, assume all weights inW are non-zero.1108

Consider an ` partition of the set V . We will argue in two1109

cases based on whether there is a subset that contains ex-1110

actly one non-zero weight.1111

1. Case 1: In the partition, if there is a subset with exactly1112

one non-zero weight.1113

Without loss of generality, assume that the subset with1114

exactly one non-zero weight contains w1 and the subset1115

is {w1, 0, ..., 0}. We denote the subset S1. In S1, there are1116

` − 1 zero weights and a non-zero weight w1 from W .1117

Since paper 1 receives ` weights in total, we can remove1118

S1, paper 1 and reviewer 1.1119

Now we are left with n− 1 reviewers and papers. The re-1120

moval does not affect the number of reviews received by1121

the rest of the papers. We still have each paper getting `1122

weights. Among the weights, there is one non-zero weight1123

fromW and `− 1 zero weights. By the inductive hypoth-1124

esis, the rest of the subsets in the partition form a valid1125

assignment of V \ S1. We can assign the weights to n− 11126

reviewers.1127

We then add S1 back to the assignment. Since reviewer 11128

` weights to paper 1, it is not valid. We can solve this by1129

swapping the zero weights in S1 with zeros in other sub-1130

sets. We need to make `−1 swaps. We label the rest of the1131

subsets S2, . . . ,Sn where S2 is the subset that contains1132

most non-zero weights and the labels go in decreasing or-1133

der based on the number of non-zero weights contained in1134

a subset. We look at the rest of the subsets in the order of1135

their labels.1136

Since none of the rest of the subsets contain any weight1137

from paper 1, swapping a zero weight from paper 1 into1138

any of these subsets will nor affect the validity of the sub- 1139

set. There are at least n − 1 − n−1
` subsets that con- 1140

tain at least a zero weight. Since n > ` and ` > 2, 1141

n − 1 − n−1
` = (`−1)(n−1)

` ≥ ` − 1. Thus, we have 1142

enough subsets to swap the zero weights from paper 1 in. 1143

Then we make sure the zero weights swapped into S1 will 1144

not come from the same paper. We label the zeros in S1 1145

with index 1, . . . , `− 1. Suppose there are no subsets that 1146

do not contain any zero weights. Then when we need to 1147

swap out the zero weight at index i in S1, there are at most 1148

n−i non-zero weights in the untouched subsets due to the 1149

order we look at the subsets. There are n − i untouched 1150

subsets as well. Then there exists an untouched subset that 1151

contains i zero weights. Since at this stage S1 has already 1152

completed i − 1 swaps, we can find a zero weight from 1153

the untouched subset to swap so that the zero weight does 1154

not come from the same paper as the zero weights from 1155

previous swaps. Note that if we have any subset that does 1156

not contain any zero weight or we skip some subsets due 1157

to conflict of papers, then the fraction of non-zero weights 1158

left and untouched subsets will be even smaller. So we are 1159

guaranteed to find a proper zero weight to swap. Thus, we 1160

can make `− 1 swaps of the zero weights to S1 and make 1161

all subsets valid assignments of weights. Such swaps do 1162

not affect the values in each subset. 1163

Therefore, such partition can result in a valid assignment 1164

of the n · ` scores among n reviewers. 1165

2. Case 2: In the partition, if there are no subsets with exactly 1166

one non-zero weight. 1167

SinceW contains n elements and there are n subsets, by 1168

pigeon hole principle, there must be a subset S1 that con- 1169

tains all zero weights. 1170

Without loss of generality, we find the subset that con- 1171

tains w1 and then swap w1 with a zero weight in S1. This 1172

results in S ′1 = {w1, 0, . . . , 0}. 1173

Now we have a subset that contains exactly 1 weight from 1174

W . Like in case 1, we remove the subset, reviewer 1 and 1175

paper 1. We can find a valid assignment of the rest of the 1176

weights to n − 1 reviewers. Then we will put S ′1 back to 1177

the assignment. Currently all weights in S ′1 are from paper 1178

1. We identify the subset where w1 comes from, and swap 1179

w1 back into the subset with a zero weight there. Since 1180

the subset can not contain any weights from paper 1, we 1181

can safely put w1 back without having two weights from 1182

the same paper. 1183

After the swap, S ′1 has ` − 1 zero weights from paper 1184

1 and a zero weight from a different paper, say paper 2. 1185

We need to make ` − 2 swaps for the zeros in S ′1. We 1186

label the rest of the subsets S2, . . . ,Sn where S2 is the 1187

subset that contains most non-zero weights and the labels 1188

go in decreasing order based on the number of non-zero 1189

weights contained in a subset. We look at the rest of the 1190

subsets in the order of their labels. 1191

Since none of the rest of the subsets contain any weight 1192

from paper 1, swapping a zero weight from paper 1 into 1193

any of these subsets will nor affect the validity of the sub- 1194

set. In the worst case, there exists a subset that contains 1195

w1 and there are at most n−2
`−1 subsets that only contains a 1196



zero weight from paper 2 because such tuples cannot con-1197

tain w2. Then there are at least n − 1 − n−2
`−1 − 1 subsets1198

that we can swap the zero weights in S ′1. Since n > ` and1199

` > 2, n− 1− n−2
`−1 − 1 = (`−2)(n−2)

`−1 ≥ `− 2. Thus, we1200

have enough subsets to swap the zero weights from paper1201

1 in.1202

We keep a zero weight from paper 1 in S1 and label the1203

rest of the zero weights in S1 with index 1, . . . , ` − 2.1204

Suppose there are no subsets that do not contain any zero1205

weights. Then when we need to swap the zero weight at1206

index i in S1, there are at most n − i non-zero weights1207

in the untouched subsets due to the order we look at the1208

subsets. There are n − i untouched subsets as well. Then1209

there exists a subset that contains i+1 zero weights. Since1210

at this stage S1 has already completed i − 1 swaps, we1211

can find a zero weight to swap that does not conflict with1212

the weights from previous swaps and not from paper 2 ei-1213

ther. Note that if we have any subset that does not contain1214

any zero weight or we skip some subsets due to conflict1215

of papers, then the fraction of non-zero weights left and1216

untouched subsets will be even smaller. So we are guar-1217

anteed to find a proper zero weight to swap. Thus, we can1218

make `− 2 swaps of the zero weights to S ′1 and makes all1219

subsets valid assignments of weights. Such swaps do not1220

affect the value in each subset.1221

Therefore, such partition can result in a valid assignment1222

of the n · ` weights among n reviewers.1223

In conclusion, any `-partition of V can be interpreted as a1224

valid assignments of weights to n reviewers.1225

D.5 Proof of Theorem 4.61226

We would like to show that the convex set contains Θ. We1227

will show that the bounds are indeed lower and upper bounds1228

on each entry.1229

We will first show that the lower bounds computed by the1230

algorithm are correct.1231

Assume for the sake of contradiction, there exists an as-1232

signment such that θ∗i is less than the lower bound on θ∗i we1233

computed, denoted as θi. We use ν to denote the tuple that1234

results in θ∗i and use ν′ to denote the tuple that we choose1235

in the algorithm that has mean θi. Since ν is a valid assign-1236

ment, it is the sum of ` weights from ` distinct papers. Since1237

Ω contains all such tuples, it contains ν. And since θ∗i < θi,1238

we encountered ν before we encounter ν′ in Ω. We did not1239

choose ν as the tuple for lower bound due to its violation of1240

either criterion C1 or criterion C2.1241

If ν violates criterion C1, it does not have a left chain1242

of size at least i. There cannot be i − 1 weight tuples each1243

containing ` weights from different papers such that they1244

all have mean no larger than θ∗i . Otherwise they form a left1245

chain of length i. So ν cannot have its mean appear at entry1246

i in θ∗.1247

If ν violates criterion C2, there exists a row that has more1248

than n − i unmarked entries in X . The weights of the un-1249

marked entries have not been encountered so far, which in-1250

dicates that any tuple that contains the weights from un-1251

marked entries has mean no less than θ∗i . Otherwise, we1252

would have encountered the weight before ν and mark its1253

entry. We know that there are n− i reviewers who has mean 1254

weight no less than θ∗i . In addition, there are more than n− i 1255

weights left for at least one paper. By Pigeon Hole Principle, 1256

there exists a reviewer gives a weight tuple that contains two 1257

weights from the same paper. However, no two weights from 1258

the same paper can be in the same tuple since one reviewer 1259

cannot give 2 weights to the same paper. So ν cannot have 1260

its mean appear at entry i in θ∗. 1261

Thus, θ∗i cannot be a value for entry i in θ∗. The value θi 1262

we computed is indeed a lower bound on that entry. 1263

Following a similar argument, we can prove the correct- 1264

ness of the upper bounds from the algorithm. 1265

D.6 Proof of Theorem 4.7 1266

We will show that the proposed algorithm has polynomial 1267

time complexity in the number of reviewers. There are 1268

n · ` weights, so the size of Ω′, denoted |Ω′|, has size at 1269

most
(
n·`
`

)
, which is of complexity O(n`). Sorting Ω′ has 1270

O(|Ω′| log(|Ω′|)) time complexity, which is still polynomial 1271

in n. There are
(|Ω′|

2

)
pairs of vertices to examine for edges. 1272

Therefore, constructing G is of polynomial time in n. To 1273

compute the length longest left chain and right chain of a 1274

vertex, we can make use of a dynamic programming algo- 1275

rithm that only requires us to loop through Ω once to com- 1276

pute length of longest left chain of all vertices and loop one 1277

more time to compute the length of longest right chain. For 1278

each vertex, we examine at most all its neighbors, which is 1279

of size polynomial in n. Lastly, after all preparation work, 1280

for each vertex, we take O(1) time to check criteria C1 and 1281

and C3 at most O(m) time to check criteria C2 and C4. 1282

Since m ≤ n · `, both operations are polynomial in n. Thus, 1283

the proposed algorithm computes the bounds in time poly- 1284

nomial in n. 1285

We will use quadratic programming to project noisy data 1286

onto the convex set and there are 2n linear constraints. This 1287

operation is also polynomial in n. 1288

Thus, the proposed algorithm has time complexity that is 1289

polynomial in n. 1290

D.7 Proof of Theorem 4.8 1291

Axiomatic property A1: When all weights are the same, all 1292

weight tuples have the same mean, which equals the weight. 1293

Thus, all lower and upper bounds have the same value as the 1294

weight. The convex set contains a single vector and projec- 1295

tion of any noisy data on such convex set will result in the 1296

vector, whose entries are all the same as the weight. 1297

Axiomatic property A2: When ` = 1, there are exactly n 1298

weight tuples, each containing one weight. We will choose 1299

the same weight tuple for lower bound and upper bound on 1300

θ∗i . The mean of the chosen weight tuple is the weight of 1301

rank i among all n weights. Therefore, the convex set con- 1302

tains exactly one vector, which is the sorted vector of all 1303

weights. Projection of any noisy data onto this convex set 1304

will result in the vector of sorted weights. 1305

Axiomatic property A3: When all except for one paper re- 1306

ceives all zero weights, computation of lower bound on θ∗i 1307

when i < n − k will choose a tuple whose weights are all 1308

zeros. When i ≥ n − k, computation of lower bound will 1309



choose a tuple that contains a nonzero weights due to crite-1310

rion C2. Similarly, to compute an upper bound on θ∗i when1311

i ≥ n − k, we will choose a tuple with a nonzero weight1312

due to the criterion C3. But when i < n − k, the algorithm1313

will choose a tuple with all zero weights. The example we1314

present in Section B illustrates this process. Therefore, the1315

convex set again contains only a vector who has n− k zero1316

entries. Projection of any noisy data will result in this vector.1317


