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Part 3: Other topics (very brief)



Part |I: What is Federated Learning?



Data is born at the edge

Billions of phones & loT devices constantly generate data | .
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Data enables better products and smarter models
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Can data live at the edge?

Data processing is moving on device:

Improved latency
Works offline
Better battery life
Privacy advantages

E.g., on-device inference for mobile
keyboards and cameras.
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Can data live at the edge?

Data processing is moving on device:

Improved latency
Works offline
Better battery life
Privacy advantages

E.g., on-device inference for mobile
keyboards and cameras.

What about analytics?
What about learning?




Cross-device federated learning
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Applications of cross-device federating learning

What makes a good application?

e On-device data is more relevant
than server-side proxy data

e On-device data is privacy
sensitive or large

e Labels can be inferred naturally
from user interaction

Example applications

Language modeling for mobile
keyboards and voice recognition

Image classification for
predicting which photos people
will share



B Gboard: next-word prediction

Federated RNN (compared to prior n-gram model):
e Better next-word prediction accuracy: +24%
More useful prediction strip: +10% more clicks
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Q Other federated models in Gboard
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Emoji prediction

e 7% more accurate emoji predictions
e prediction strip clicks +4% more

e 11% more users share emojis!

Action prediction

When is it useful to suggest a gif, sticker, or

search query?

e 47% reduction in unhelpful suggestions

e increasing overall emoji, gif, and sticker
shares

Discovering new words
Federated discovery of what words people
are typing that Gboard doesn’t know.

Ramaswamy, et al. Federated Learning
for Emoji Prediction in a Mobile
Keyboard. arXiv:1906.04329.

T. Yang, et al. Applied Federated
Learning: Improving Google Keyboard
Query Suggestions. arXiv:1812.02903

M. Chen, et al. Federated Learning
Of Out-Of-Vocabulary Words.
arXiv:1903.10635



Cross-device federated learning at Apple

MIT Technology Review | sonm
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Artificial intelligence / Machine learning

How Apple personalizes Siri without

hoovering up your data

The tech giant s using privacy-preserving machine learning to
improve its voice assistant while keeping your data on your phone.

by KarenHao

December 11,2019

‘Instead, it relies primarily on a technique called
federated learning, Apple’s head of privacy, Julien
Freudiger, told an audience at the Neural Processing
Information Systems conference on December 8.
Federated learning is a privacy-preserving
machine-learning method that was first introduced
by Google in 2017. It allows Apple to train different
copies of a speaker recognition model across all its
users’ devices, using only the audio data available
locally. It then sends just the updated models back to
a central server to be combined into a master model.
In this way, raw audio of users’ Siri requests never
leaves their iPhones and iPads, but the assistant
continuously gets better at identifying the right
speaker.”

https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/



https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/

Federated Learning

Federated learning is a machine learning setting where
multiple entities (clients) collaborate in solving a machine
learning problem, under the coordination of a central server
or service provider. Each client's raw data is stored locally and
not exchanged or transferred; instead, focused updates
intended for immediate aggregation are used to achieve the
learning objective.

definition proposed in
Advances and Open Problems in Federated Learning (arxiv/1912.04977)



https://arxiv.org/abs/1912.04977

Federated learning - defining characteristics

Data is generated locally
and remains decentralized.
Each client stores its own
data and cannot read the

[ J
[ J
data of other clients. Data
is not independently or @
identically distributed. server
3

1

A central orchestration
server/service coordinates the
clients training, but never sees raw data.



Cross-silo federated learning
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Cross-silo federated learning from Intel

ARTIFICIAL INTELLIGENCE, DIAGNOSTICS {3 eircuUiTs Q [ rem m

UPenn, Intel paI'tner to use federated EXPLORE  ARTICLES  FORUMS EDUCATION  TOOLS  VIDEOS  DATASHEETS
learning Al for early brain tumor detection

The project will bring in 29 institutions from North America, Europe

and India and will use privacy-preserved data to train Al models. Is Machine Learning for Tumor

Federated learning has been described as being born at the . .

intersection of Al, blockchain, edge computing and the Internet of Re.search at Od(EIS With Patient

Things. Privacy? Not With Federated

: : Learning, Intel Says Ty s e e

® ; May 13, 2020 by Tyler Charboneau The Machine

Making sense of Al

"The University of Pennsylvania and chipmaker Intel are forming a

partnership to enable 29 heatlhcare and medical research institutions BioIT World Intel partners with Penn Medicine

around the world to train artificial intelligence models to detect brain

Next-Gen Technology « Big Data « Personalized Medicine

tumors early. " Subscribe News Advertise Free Downloads Events About Bio-ITV tO develop bl'ain tumOI' classifier
ReCATED sToRiEs ] Intel, Penn Medicine Launch Federated Ld with federated learning

"“The program will rely on a technique known as federated learning, ;:;dzi;ﬂ;: v | W

which enables institutions to collaborate on deep learning projects s s 0| gyl ot %

without sharing patient data. The partnership will bring in institutions in cpmare e | Yoyt et tronoione R

the U.S., Canada, U.K., Germany, Switzerland and India. The centers — kit e E‘gEif'il}zi;";?é;?fa'f’ni':xL‘(‘,’L?EL.@5 o TQQ&ET

which include Washington University of St. Louis; Queen’s University in ?:"m::" ;,,:. Lty Spridn o s cenertr The .Q%Wg. orug

Kingston, Ontario; University of Munich; Tata Memorial Hospital in Tt‘loi’fm"m e e sgp.:mbe, 16- 1:2020

Mumbai and others — will use Intel’s federated learning hardware and e e e M e

software." Smeinhnote | | 2

[1] https://medcitynews.com/2020/05/upenn-intel-partner-to-use-federated-learning-ai-for-early-brain-tumor-detection/

[2] https://www.allaboutcircuits.com/news/can-machine-learning-keep-patient-privacy-for-tumor-research-intel-says-yes-with-federated-learning/
[3] https://venturebeat.com/2020/05/11/intel-partners-with-penn-medicine-to-develop-brain-tumor-classifier-with-federated-learning/

[4] http://www.bio-itworld.com/2020/05/28/intel-penn-medicine-launch-federated-learning-model-for-brain-tumors.aspx


https://www.allaboutcircuits.com/news/can-machine-learning-keep-patient-privacy-for-tumor-research-intel-says-yes-with-federated-learning/
https://medcitynews.com/2020/05/upenn-intel-partner-to-use-federated-learning-ai-for-early-brain-tumor-detection/#:~:text=The%20University%20of%20Pennsylvania%20and,to%20detect%20brain%20tumors%20early.
https://www.businesswire.com/news/home/20200511005132/en/%C2%A0Intel-Works-University-Pennsylvania-Privacy-Preserving-AI-Identify
http://www.bio-itworld.com/2020/05/28/intel-penn-medicine-launch-federated-learning-model-for-brain-tumors.aspx
https://venturebeat.com/2020/05/11/intel-partners-with-penn-medicine-to-develop-brain-tumor-classifier-with-federated-learning/

Cross-silo federated learning from NVIDIA

NVIDIA.

HOME DEEPLEARNING NETWORKING DRIVING GAMING PROGRAPHICS  AUTONOMOUS MACHINES ~ HEALTHCARE Al PODCAST

Medical Institutions Collaborate to Improve
Mammogram Assessment Al with NVIDIA Clara
Federated Learning

In a federated learning collaboration, the American College of Radiology, Diagnosticos da America, Partners
HealthCare, Ohio State University and Stanford Medicine developed better predictive models to assess breast tissue
density.

"Federated learning addresses this challenge, enabling different
institutions to collaborate on Al model development without sharing
sensitive clinical data with each other. The goal is to end up with
more generalizable models that perform well on any dataset,
instead of an Al biased by the patient demographics or imaging
equipment of one specific radiology department.”

= Menu  Q searcH MedCityNews
Theranos founder Elizabeth [ Covid-19 shows primary 3 ways t
Holmes may seek ‘mental care's value to diverse tt
. . disease’ defense in trial '7” communities and how to pay " (%
d t she forit A
Health care organizations use ecumentshovs | SR i Sy

HOSPITALS, ARTIFICIAL INTELLIGENCE, HEALTH TECH

Nvidia says it has a solution for

healthcare’s data problems

.
analVSIS AI The chipmaker touted a new framework that would allow hospitals
and pharmaceutical companies to collaborate on Al projects without
sharing sensitive data. Nvidia said the framework is already gaining
Is and drug developers.

Nvidia’s Clara federated learning
to improve mammogram

VE Transform 2020 pr—

VentureBeat's Al event of the year

#VBTransform

Nvidia and Mercedes-Benz detail
self-driving system with
automated routing and parking

[1] https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/

[2] https://venturebeat.com/2020/04/15/healthcare-organizations-use-nvidias-clara-federated-learning-to-improve-mammogram-analysis-ai/
[3] https://medcitynews.com/2020/01/nvidia-says-it-has-a-solution-for-healthcares-data-problems/

[4] https://venturebeat.com/2020/06/23/nvidia-and-mercedes-benz-detail-self-driving-system-with-automated-routing-and-parking/


https://venturebeat.com/2020/04/15/healthcare-organizations-use-nvidias-clara-federated-learning-to-improve-mammogram-analysis-ai/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/
https://medcitynews.com/2020/01/nvidia-says-it-has-a-solution-for-healthcares-data-problems/
https://venturebeat.com/2020/06/23/nvidia-and-mercedes-benz-detail-self-driving-system-with-automated-routing-and-parking/

Cross-device federated learning

millions of intermittently
available client devices

coordinating
server

Cross-silo federated learning

small number of clients
(institutions, data silos),
high availability

coordinating
server
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Cross-device federated learning

clients cannot be indexed
directly (i.e., no use of
client identifiers)

Selection 1is
coarse-grained

coordinating
server

Updates are

anonymous

Cross-silo federated learning

each client has an identity or
name that allows the system to
access it specifically
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Cross-device federated learning

Server can only access a (possibly
biased) random sample of clients on
each round.

Large population => most clients only
participate once.

D ? coordinating
; server

Cross-silo federated learning

Most clients participate in every
round.

Clients can run algorithms that
maintain local state across rounds.
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Cross-device federated learning

Server can only access a (possibly
biased) random sample of clients on
each round.

Large population => most clients only
participate once.

coordinating
server
1
{7

round 2
(completely new set of devices participate)

Cross-silo federated learning

Most clients participate in every
round.

Clients can run algorithms that

maintain local state across rounds.
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Cross-device federated learning

communication is often the
primary bottleneck

coordinating
server

Cross-silo federated learning

communication or computation
might be the primary
bottleneck

coordinating
server
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Cross-device federated learning

horizontally partitioned data

features

examples

coordinating
server

Cross-silo federated learning

horizontal or
vertically partitioned data

features

examples

coordinating QEP//

server
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Distributed datacenter machine learning

servers

engineer



FL terminology

e Clients - Compute nodes also holding local data, usually belonging to one
entity:
o loT devices
Mobile devices

O
o Data silos
o Data centers in different geographic regions

e Server - Additional compute nodes that coordinate the FL process but don't
access raw data. Usually not a single physical machine.



Characteristics of the federated learning setting

Datacenter distributed learning Cross-silo Cross-device
federated learning federated learning

Setting Training a model on a large but Training a model on siloed data. The clients are a very large number of mobile
"flat" dataset. Clients are compute | Clients are different organizations or loT devices.
nodes in a single cluster or (e.g., medical or financial) or
datacenter. datacenters in different geographical

regions.

Data distribution Data is centrally stored, so it can Data is generated locally and remains decentralized. Each client stores its own
be shuffled and balanced across data and cannot read the data of other clients. Data is not independently or identically
clients. Any client can read any distributed.
part of the dataset.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the training, but never sees raw data.

Wide-area None (fully connected clients in Typically hub-and-spoke topology, with the hub representing a coordinating service

communication one datacenter/cluster). provider (typically without data) and the spokes connecting to clients.

Data availability All clients are almost always available. Only a fraction of clients are available at any
one time, often with diurnal and other
variations.

Distribution scale Typically 1 - 1000 clients. Typically 2 - 100 clients. Massively parallel, up to 10"° clients.

Adapted from Table 1 in Advances and Open Problems in Federated Learning (arxiv/1912.04977)



https://arxiv.org/abs/1912.04977

Characteristics of the federated learning setting

Datacenter distributed learning

Cross-silo
federated learning

Cross-device
federated learning

Addressability

Each client has an identity or name that allows the system to access it

specifically.

Clients cannot be indexed directly (i.e., no use
of client identifiers)

Client statefulness

Stateful --- each client may participate in each round of the computation,

carrying state from round to round.

Generally stateless --- each client will likely
participate only once in a task, so generally
we assume a fresh sample of never before
seen clients in each round of computation.

Primary bottleneck

Computation is more often the
bottleneck in the datacenter, where
very fast networks can be
assumed.

Might be computation or
communication.

Communication is often the primary
bottleneck, though it depends on the task.
Generally, federated computations uses wi-fi
or slower connections.

Reliability of clients

Relatively few failures.

Highly unreliable --- 5% or more of the clients
participating in a round of computation are
expected to fail or drop out (e.g., because the
device becomes ineligible when battery,
network, or idleness requirements for
training/computation are violated).

Data partition axis

Data can be partitioned /
re-partitioned arbitrarily across
clients.

Partition is fixed. Could be
example-partitioned (horizontal) or
feature-partitioned (vertical).

Fixed partitioning by example (horizontal).

Adapted from Table 1 in Advances and Open Problems in Federated Learning (arxiv/1912.04977)



https://arxiv.org/abs/1912.04977

Fully decentralized (peer-to-peer) learning

engineer/\)/




Fully decentralized (peer-to-peer) learning




Characteristics of FL vs decentralized learning

Federated learning Fully decentralized
(peer-to-peer) learning

Orchestration A central orchestration server/service organizes | No centralized orchestration.
the training, but never sees raw data.

Wide-area Typically hub-and-spoke topology, with the hub | Peer-to-peer topology.
communication pattern | representing a coordinating service provider
(typically without data) and the spokes
connecting to clients.

Adapted from Table 3 in Advances and Open Problems in Federated Learning (arxiv/1912.04977)



https://arxiv.org/abs/1912.04977

Cross-Device Federated Learning
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Federated learning

data device
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Not now



Federated learning

data device
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Federated learning
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Federated learning
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Federated learning
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Federated learning
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Federated learning
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Federated learning
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Federated learning
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Federated learning

data device

Typical orders-of-magnitude

100-1000s of clients per round

1000s of rounds to convergence

1-10 minutes per round

N (another)

initial model




Federated Averaging (FedAvg) algorithm

Server computes | (another)
overall update using .
a simple weighted combined

average. model

data device

Devices run multiple
steps of SGD on their
local data to compute
an update.

N (another)

initial model

Bl @ X

McMahan, et al. Communication-Efficient Learning of Deep engineer
Networks from Decentralized Data. AISTATS 2017.



Beyond Learning: Federated
Analytics



Beyond learning: federated analytics
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Federated analytics

Federated analytics is the practice of applying data science methods to
the analysis of raw data that is stored locally on users’ devices. Like
federated learning, it works by running local computations over each
device’s data, and only making the aggregated results — and never any
data from a particular device — available to product engineers. Unlike
federated learning, however, federated analytics aims to support basic

data science needs.

definition proposed in https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html



https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html

Federated analytics

Federated histograms over closed sets
Federated quantiles and distinct element counts
Federated heavy hitters discovery over open sets
Federated density of vector spaces

Federated selection of random data subsets
Federated SQL

Federated computations?

etc...



Interactive algorithms

Similar to learning, the
on-device computation is a
function of a server state

coordinating
server

Zhu et. al. Federated Heavy Hitters Discovery
with Differential Privacy AISTATS'20.

Non-interactive algorithms

Unlike learning, the
on-device computation does
not depend on a server state

coordinating
server

Erlingsson et. al. RAPPOR: Randomized
Aggregatable Privacy-Preserving Ordinal
Response CCS'14.



Part ll: Privacy for Federated
Learning and Analytics



Aspects of Privacy

The why, what, and how of using data.

Why?

Transparency & consent

What?

Limited influence of any individual

How?

Security & data minimization

Why use this data? The user understands and supports the
intended use of the data.

What is computed? When data is released, ensure it does not
reveal any user's private information.

How and where does the computation happen? Release data to
as few parties as possible. Minimize the attack surface where
private information could be accessed.



Aspects of Privacy
The why, what, and how of using data.

What is computed? When data is released, ensure it does not
What? g

reveal any user's private information.
Limited influence of any individual

How and where does the computation happen? Release data to
HOW? as few parties as possible. Minimize the attack surface where
Security & data minimization private information could be accessed.




ML on sensitive data: privacy vs. utility

Privacy

Utility



ML on sensitive data: privacy vs. utility

Privacy

Utility



ML on sensitive data: privacy vs. utility

1. Policy

2. Technology

Privacy

today

Utility



ML on sensitive data: privacy vs. utility (?)

1. Policy

2. New Technology

Privacy

today

Utility



ML on sensitive data: privacy vs. utility (?)

1. Policy

2. New Technology

Privacy

Utility
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What private information might an actor learn? -
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What private information might an actor learn
with access to
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What private information might an actor learn
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What private information might an actor learn -
with access to ...
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What private information might an actor learn -
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How much do | need to trust...
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Privacy principles guiding FL o

Anonymous
ephemeral
updates

client
devices

Early aggregation,
minimum retention

model deployment
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°
Only-in-aggregate
release




What private information might an actor learn -
with access to -
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Encryption, at rest and on the wire
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What private information might an actor learn -
with access to ...
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What private information might an actor learn -
with access to ...

... the server?

client
devices

federated
training
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model
model deployment
Local development @ .
Differential er?neer
° Privacy &

Warner. Randomized response. 1965.

How
Kasiviswanathan, et. al. What can we learn privately? 2011.



What private information might an actor learn -
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What private information might an actor learn -

... the server?
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What private information might an actor learn -
with access to ...

... the released
models and
server metrics?

client
devices

federated
training

Central
Differential

developme Privacy

engineer

... the deployed
model?

Dwork and Roth. The Algorithmic

How
Foundations of Differential Privacy. 2014.



What private information might an actor learn -

with access to ...

client @
devices
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... the released
models and
server metrics?
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federated \

training | Empirical privacy
auditing

(e.g. secret sharer,
membership inference)
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Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, Dawn Song.
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks. 2018.
Congzheng Song, Vitaly Shmatikov. Auditing Data Provenance in Text-Generation Models. 2018.

... the deployed

model?

Matthew Jagielski, Jonathan Uliman, Alina Oprea. Auditing Differentially Private Machine Learning: How Private is Private SGD? 2020.




Private Aggregation & Trust



Distributing Trust for Private Aggregation



Distributing Trust for Private Aggregation

© Trusted “third party”
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Distributing Trust for Private Aggregation

© Trusted “third party” © Trusted Execution Environments

third-party

trusted
hardware



Distributing Trust for Private Aggregation

© Trusted “third party” @ Trusted Execution Environments © Trust via Cryptography
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trusted cryptography
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Communication Robust

Efficient to Clients Going
for Vectors & Tensors Offline



Random positive/negative pairs, aka antiparticles

Devices cooperate to sample random @
pairs of 0-sum perturbations vectors. A

& Bob

Matched pair sums to ©
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Add antiparticles before sending to the server
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The antiparticles cancel when summing contributions
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Revealing the sum.
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But there are two challenges...
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These vectors are big!
How do users agree efficiently?
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2. What if someone drops out?
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Pairwise Diffie-Hellman Key Agreement

»— Secret
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Pairwise Diffie-Hellman Key Agreement

— Secret

a
Safe to reveal __ @
(cryptographically
hard to infer secret)
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Public parameters: g, (mod p) g
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Pairwise Diffie-Hellman Key Agreement

Because g* are public, we can a
share them via the server.
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Pairwise Diffie-Hellman Key Agreement

Saves a copy
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Pairwise Diffie-Hellman Key Agreement
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Pairwise Diffie-Hellman Key Agreement

Commutative op
-~ Shared secret!
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Pairwise Diffie-Hellman Key Agreement

Secrets are scalars, but.... a

Shared secret!
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Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Google

Secrets are scalars, but.... a

Use each secret to seed a
pseudorandom number generator,
generate paired antiparticle vectors.

—

PRNG(g™) - W= A

Shared secret!



Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but.... a

Use each secret to seed a \4 A

pseudorandom number generator,

generate paired antiparticle vectors. Bob
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Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but.... a

Use each secret to seed a \4 A

pseudorandom number generator,

generate paired antiparticle vectors. Bob

PRNG(g") — W=-A b
AV

1. Efficiency via pseudorandom generator

2. Mobile phones typically don't support
peer-to-peer communication anyhow.

3. Fewer secrets = easier recovery. VYA
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k-out-of-n Threshold Secret Sharing

Goal: Break a secret into n pieces, called shares.
e <k shares: learn nothing
e 2k shares: recover s perfectly.

< Each line is
a share

2-out-of-3 secret sharing: \

x-coordinate of the
intersection is the secret

Google



k-out-of-n Threshold Secret Sharing

Goal: Break a secret into n pieces, called shares.
e <k shares: learn nothing
e 2k shares: recover s perfectly
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k-out-of-n Threshold Secret Sharing

Goal: Break a secret into n pieces, called shares.
e <k shares: learn nothing
e 2k shares: recover s perfectly
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Users make shares of their secrets
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And exchange with their peers
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Enough honest users + a high enough threshold
= dishonest users cannot reconstruct the secret.
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Enough honest users + a high enough threshold
= dishonest users cannot reconstruct the secret.

However....
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Secure Aggregation

v
N
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Server aggregates users'
updates, but cannot inspect A '
the individual updates.

K. Bonawitz, V. lvanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, K. Seth. Practical Secure
Aggregation for Privacy-Preserving Machine Learning. CCS’77.

Interactive Cryptographic Protocol

Each phase, 1000 clients + server interchange
messages over 4 rounds of communication.

Secure Robust

s malicious clients v clients can drop out
+ fully observed server

Communication Efficient

# Params Bits/Param  # Users Expansion

20 =1m 16 210=1k 1.73x

224 =16m 16 214 =16 k 1.98x



CCS 2017

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan,
S. Patel, D. Ramage, A. Segal, K. Seth. Practical Secure
Aggregation for Privacy-Preserving Machine Learning.

Complete Graph

of pairwise masks, secret shares

-
:




CCS 2017 CCS 2020

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova

S. Patel, D. Ramage, A. Segal, K. Seth. Practical Secure Secure Single-Server Aggregation with (Poly)Logarithmic
Aggregation for Privacy-Preserving Machine Learning. Overhead.
Complete Graph Random Harary(n, k)
of pairwise masks, secret shares n clients, k neighbors, random node assignments
k = O(log n)

-
:




Secure Aggregation

K. Bonawitz, V. Ivanoy, B. Kreuter, A. Marcedone, H. B. J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova
McMahan, S. Patel, D. Ramage, A. Segal, K. Seth. Practical Secure Single-Server Aggregation with (Poly)Logarithmic
Secure Aggregation for Privacy-Preserving Machine Overhead. CCS 2020.

Learning. CCS 20177.

Protocol Server Client
Computation Communication Computation Communication
A O(n?1) O(n* +nl) O(n® + nl) O(n +1)
?g(l:é 232%. O(nlog?n+nllogn) O(nlogn+nl)  O(logn +llogn) O(logn +1)
Solution O(nl) O(nl) () (1)




CCS 2017 CCS 2020

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova

S. Patel, D. Ramage, A. Segal, K. Seth. Practical Secure Secure Single-Server Aggregation with (Poly)Logarithmic
Aggregation for Privacy-Preserving Machine Learning. Overhead.
Complete Graph Random Harary(n, k)
of pairwise masks, secret shares n clients, k neighbors, random node assignments
k =O(log n)
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Cost of 1 million cohorts, each of 1000 clients Cost of a single cohort of 1 billion clients



Sparse Federated Learning & Analytics

e Embedding-based models
o Word-based Language Models

o Object Recognition

e Compound models

o Multiple fixed domains
e.g. locations, companies, etc

o Genre/cluster models

o Pluralistic models

e

e Federated Analytics



Sparse Federated Learning & Analytics

Sparse
Aggregation

Sliced Model
Download




Sparse Federated Learning & Analytics
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Private Sliced Model Download // Private Information Retrieval

A EB

Encrypted 1-Hot Query Vector

Vector of Model Slices (1 per element)




Private Sliced Model Download // Private Information Retrieval
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Private Sparse Aggregation // Shuffling via Secure Aggregation

N N N N «— Vector with message-sized slots

. . . «— Clients choose a random slot

Google



Private Sparse Aggregation // Shuffling via Secure Aggregation

Birthday "Paradox": conflicts are likely, even with quite large vectors

I N N — Vector with message-sized slots

. . . «— Clients choose a random slot

Google



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

| [ | N BNy /| 1AW | — (pseudonym+message)-sized slots

«— Clients choose random pseudonym,
map to k slots using hash functions

Google



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

&

Google

«— Server recovers (pseudonym+message)
for all non-conflict slots



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

& N N — Server recovers (pseudonym+message)
for all non-conflict slots

Then removes all copies from vector

Google



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

& N N — Server recovers (pseudonym+message)
for all non-conflict slots

Then removes all copies from vector

De-conflicting more slots

Google



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

& N N — Server recovers (pseudonym+message)
for all non-conflict slots

Then removes all copies from vector

De-conflicting more slots

Repeat until all messages extracted
(or no more progress)

Google



Private Sparse Aggregation // Shuffling via Secure Aggregation

J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova
Secure Single-Server Aggregation with (Poly)Logarithmic

Invertible Bloom Lookup Tables (IBLTs) Overhead. CCS 2020.
Success Rates for Recover
& N N o :
o 0.8
g 0.6 4

Probability of recovering
all messages

Average fraction of

messages recovered

o
N

I
=}

1.0 122 1.2 13 14 15 1.6
Ratio of entries to clients

Figure 4. Expected fraction of messages recovered and probability
of recovering all messages against the length [ of the vectors
used. For this the number of clients is » = 10000 and each inserts

. . . their message in ¢ = 3 places.
Vector Length ~= 1.3x messages!

Google



Differentially Private Federated
Training



Differential
Privacy

Differential privacy is the statistical science of trying to learn
as much as possible about a group while learning
as little as possible about any individual in it.

Andy Greenberg
Wired 2016.06.13



https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/

Differential
Privacy [ Model
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Differential
Privacy

M(D)
M(D’)

(s, 8)-Differential Privacy: The distribution of the
output M(D) (a trained model) on database (training
dataset) D is nearly the same as M(D’) for all
adjacent databases D and D'

VvS: PrM(D)€S] < exp(g) - PrIM(D"€S] + &




Record-level
Differential
Privacy

M(D)
M(D’)

(s, 8)-Differential Privacy: The distribution of the
output M(D) (a trained model) on database (training
dataset) D is nearly the same as M(D’) for all adjacent

databases D and D’
M. Abadi, A. Chu, I.
Goodfellow, H. B.
. ) 1. McMahan, I. Mironov, K.
presence/absence of one example Learning with Differential

Privacy. CCS 20176.



User-level
Differential
Privacy

0 B
0B

(s, 8)-Differential Privacy: The distribution of the
output M(D) (a trained model) on database (training
dataset) D is nearly the same as M(D’) for all adjacent
databases D and D’

I  Model
M(D’)

>

. Model
M(D)

H. B. McMahan, et al.

- ) 4. Learning Differentially
adjacent: Sets D and D’ differ only by Private Recurrent

presence/absence of one example user ~ 2'9ua0¢ LA




Iterative training with differential privacy

1. Sample a batch of clients uniformly at random



Iterative training with differential privacy

2. Clip each update to maximum L, norm S

Clipto S

Clipto S



Iterative training with differential privacy

3. Average clipped updates

Clipto S

Average

Clipto S



Iterative training with differential privacy

4. Add noise

Clipto S

Average

Clipto S



Iterative training with differential privacy

5. Incorporate into model

Clipto S

Average

Clipto S



There are many details and possibilities

Introducing TensorFlow Privacy:

A General Approach to Adding Differential Privacy Learning with Differential Privacy for
to Iterative Training Procedures Trammg Data
7T TensorFlow
. Mar 6 - 7 min read ’ H N

H. Brendan McMahan Galen Andrew Ulfar Erlingsson NS
mcmahan@google. com galenandrew@google.com ulfar@google.com

. . § Posted by Carey Radebaugh (Product Manager) and Ulfar Erlingsson

Steve Chien Ilya Mironov Nicolas Papernot

schien@google.com mironov@google.com papernot@google.com (Research Scientist)

Peter Kairouz

kairouz@google.com Today, we're excited to announce TensorFlow Privacy (GitHub), an open

source library that makes it easier not only for developers to train machine-

n— learning models with privacy, but also for researchers to advance the state
strac
of the art in machine learning with strong privacy guarantees.

In this work we address the practical challenges of training machine learning mod-

els on privacy-sensitive datasets by introducing a modular approach that mini- ) L X . .
mizes changes to training algorithms, provides a variety of configuration strate- Modern machine learning is increasingly applied to create amazing new

gies for the privacy mechanism, and then isolates and simplifies the critical logic technologies and user experiences, many of which involve training
that computes the final privacy guarantees. A key challenge is that training algo- 4
rithms often require estimating many different quantities (vectors) from the same
set of examples — for example, gradients of different layers in a deep learning




Back to federated learning
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Differentially private federated learning
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Differential privacy for language models

LSTM-based predictive language model.
10K word dictionary, word embeddings €R%, state €R?%%, parameters: 1.35M. Corpus=Reddit posts, by author.

0.18

= =
= =
ul (e)]

AccuracyTopl
o
-
N

Accuracy of noised models vs baseline

baseline, S=15
o =0.012, S=20 |
o = 0.006, S=10
o =0.003, S=15 |
o = 0.006, S=15
o =0.012, S=15
o = 0.024, S=15

2000 3000 4000 5000

communication rounds

(4.634, 1e-9)-DP with 763k users
(1.152, 1e-9)-DP with 1e8 users

E[users per minibatch] = 5k
E[tokens per minibatch] = 8m

H. B. McMahan, et al. Learning
Differentially Private Recurrent
Language Models. ICLR 2018.



Locally differentially private federated learning

updated model

data device Clip update and add
noise on each
device

Warner. Randomized response. 1965.
Kasiviswanathan, et. al. What can we learn privately? 2011.



Central DP: Local DP:

easier to get high utility with good privacy requires much weaker trust assumptions

Can we combine the best of both worlds?



Distributed Differential Privacy



Distributing Trust for Private Aggregation

© Trusted “third party” @ Trusted Execution Environments © Trust via Cryptography
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Distributed DP via secure aggregation

Noisy/Clipped . .
updétespgre dlfferentlally
securely summed private
Clip update and add updated model
noise on each
device T /

BT

|
_____ 1




Distributed DP via secure aggregation

Challenges faced

e SecAgg operates on a finite group (finite precision) with modulo arithmetic
e Discrete Gaussian random variables are not closed under summation

e Discrete distributions with finite tails lead to catastrophic privacy failures

e Tight DP accounting needs to be fundamentally rederived

Solutions needed

e A family of discrete mechanisms that mesh well with SecAgg’s modulo arithmetic
e Closed under summation or have tractable distributions upon summation

e Can be sampled from exactly and efficiently using random bits

e Exact DP guarantees with tight accounting and no catastrophic failures



The distributed discrete Gaussian mechanism

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



The distributed discrete Gaussian mechanism

. . . Add Discrete Modulo
— Discretize |  Gaussian | clipping |

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



The distributed discrete Gaussian mechanism

. . . Add Discrete Modulo
L2l Discretize " Gaussian Clipping

Algorithm 1 Client Procedure Agjens
Input: Private vector z; € RY. {Assume dimension d is a power of 2.}
Parameters: Dimension d € N; clipping threshold ¢ > 0; granularity v > 0; modulus
m € N; noise scale o > 0; bias 8 € [0, 1).
Shared/public randomness: Uniformly random sign vector & € {—1, +1}%.
Clip and rescale vector: z = %min {1, m} -x; € R
Flatten vector: x = HyDex), € R? where H € {~1/+/d, +1/v/d}**? is a Walsh-Hadamard
matrix satisfying HTH = I and D¢ € {—1,0,+1}%*? is a diagonal matrix with £ on the
diagonal.
repeat
Let #; € Z¢ be a randomized rounding of 2/ € R?. T.e., #; is a product distribution with
E[Z;]) = 2} and ||Z; — 27 ||c < 1.

until ||Z;]]2 < min {c/ﬁ/ +d, \/CQ/’}/ + 1d+ /2log(1/B) - (c/’y + 1\/_)}

Let y; € Z% consist of d independent samples from the discrete Gaussian N7z(0, 0%/~?).
Let z; = (Z; +y;) mod m.

Output: z; € Z¢ is returned via secure aggregation protocol.

Rotation Quantization

|
|
: Random Randomized
|
|




The distributed discrete Gaussian mechanism

Z
\
X; Z;
. . . i M I
—| L2cip |—=| Discretize [ A‘édaﬁ);?arite — C”‘;‘;‘;n‘; — E — | Back to Reals
/
Zn
,_ _________________________ A
| |
| |
I Dequantization [, lnizies nverse I
| : | Rotation "l  Scale :
|
| |

—_—_——ee e — — — 4

Algorithm 2 Server Procedure Agerver

Input: Vector z = (3.7 2; mod m) € Z%, via secure aggregation.

Parameters: Dimension d € N; number of clients n € N; clipping threshold ¢ > 0;
granularity v > 0; modulus m € N; noise scale ¢ > 0; bias 5 € [0, 1).

Shared /public randomness: Uniformly random sign vector & € {—1,+1}%,

Map Z,, to {1 —m/2,2 —m/2,--- ,—1,0,1--- ,m/2 — 1,m/2} so that Z is mapped to
Z € [-m/2,m/2]¢NZ¢ (and we have Z mod m = z).

Output: y=vD:HIz € R% {Goal: y =z =>_"2;}




Federated EMNIST Classification

e Classifying handwritten digits/letters grouped by their writers
e Total writers/clients = 3400, number of clients per round = 100
e 671,585 training examples, 62 classes, model size = 1M parameters

Centralized Continuous Gaussian

Distributed Discrete Gaussian (18 bits)
Distributed Discrete Gaussian (16 bits)
Distributed Discrete Gaussian (14 bits)
Distributed Discrete Gaussian (12 bits)

Test Accuracy

User-level e =10, k=4

0.75

0.50 |

0.25

= Continuous Gaussian

—— DDGauss (B = 12)
——— DDGauss (B = 14)
= DDGauss (B = 16)
== DDGauss (B = 18)

0.00

-

500 1000 1500
Number of Rounds

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



StackOverflow Tag Prediction

e Predicting the tags of the sentences on Stack Overflow with Logistic Regression
e Total users/clients = 342477, number of clients per round = 60
e Tags vocab size = 500, Tokens vocab size = 10000, model size = 5M parameters

Centralized Continuous Gaussian

Distributed Discrete Gaussian (18 bits)
Distributed Discrete Gaussian (16 bits)
Distributed Discrete Gaussian (14 bits)
Distributed Discrete Gaussian (12 bits)

Test Recall@)

User-lev|el = 2.5,l k=4

0.0

Number of Rounds

0 500 1000 1500

0.2

0.1

0.0

User-leyel €=95, k=4

0 500 1000 1500
Number of Rounds

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



Precise DP Guarantees for
Real-World Cross-Device FL



Iterative training with differential privacy

1. Sample a batch of clients uniformly at random



Challenges

e There is no fixed or known database / dataset / population size
e Client availability is dynamic due to multiple system layers and participation
constraints

o "Sample from the population” or "shuffle devices" don't work out-of-the-box

e Clients may drop out at any point of the protocol, with possible impacts on
privacy and utility

For privacy purposes, model the environment (availability, dropout) as the
choices of Nature (possibly malicious and adaptive to previous mechanism
choices)



Goals

e Robust to Nature's choices (client availability, client dropout) in that privacy
and utility are both preserved, possibly at the expense of forward progress.

e Self-accounting, in that the server can compute a precise upper bound on
the (g,8) of the mechanism using only information available via the protocol.

e Local selection, so most participation decisions are made locally, and as few
devices as possible check-in to the server

e Good privacy vs. utility tradeoffs



Algorithm 2 Protocol schema for DP in Cross-Device FL

6o = (initialization)

for each protocol stept=1,2,... do
Nature (maybe malicious, adaptive) chooses
# Clients in CAVAILABLE decide locally whether to check in to the server

CPHECKEDIN — {4 | ShouldCheckIn(u,t,...) = 1,u € C{VAILABLEY
CSELECTED = SelectFrom(CCHECKEDIN

CREPORTED C CSELECTED that report

CAVAILABLE C CPOPULTATION

Nature chooses the clients
X; = Aggregate({LocalUpdate(u, ) | ue C’REPORTED}
# DP should allow the release of X;

;11 = ServerUpdate(6;, X;)

Server outputs ;41 and (e, 6)

ShouldCheckIn Server Runs locally on client, decides to connect to server

SelectFrom Client Selects devices to participate from CHECKEDIN
LocalUpdate Client Computes the value to report to the server
Aggregate Server Aggregates updates to produce DP output

ServerUpdate  Server Update server state (DP post processing)




Random Check-ins

Clients

Random Training
Check-Ins Round

E

2007.06605v1 [cs.LG] 13 Jul 2020

arXiv

Privacy Amplification via Random Check-Ins

Borja Balle* Peter Kairouz' H. Brendan McMahan' Om Thakkar'
Abhradeep Thakurta*

July 15, 2020

Abstract

Differentially Private Stochastic Gradient Descent (DP-SGD) forms a fundamental building block in many appli-
cations for learning over sensitive data. Two standard app: privacy amplification by ing, and privacy
amplification by shuffling, permit adding lower noise in DP-SGD than via naive schemes. A key assumption in
both these approaches is that the elements in the data set can be uniformly sampled, or be uniformly permuted —
constraints that may become prohibitive when the data is processed in a decentralized or distributed fashion. In this
paper, we focus on conducting iterative methods like DP-SGD in the setting of federated learning (FL) wherein the
data is distributed among many devices (clients). Our main contribution is the random check-in distributed protocol,
which crucially relies only on randomized participation decisions made locally and independently by each client. It

has privacy/accuracy trade-offs similar o privacy amplif by ing. However, our method does
not require server-ini ion, or even ge of the ion size. To our knowledge, this is the
first privacy amplification tailored for a distributed learning fi and it may have broader applicability beyond

FL. Along the way, we extend privacy amplification by shuffling to incorporate (=, 5)-DP local randomizers, and
improve its In practical regimes, this improvement allows for similar privacy and utility
using data from an order of magnitude fewer users.

1 Introduction

Modern mobile devices and web services benefit significantly from large-scale machine learning, often involving
training on user (client) data. When such data is sensitive, steps must be taken to ensure privacy, and a formal guarantee
of differential privacy (DP) [15. 16] is the gold standard. For this reason, DP has been adopted by companies including
Google [9, 18, 20], Apple (2], Microsoft [13], and LinkedIn [31], as well as the US Census Bureau [26].

Other privacy-enh i can be bined with DP to obtain additional benefits. In particular, cross-
device federated learning (FL) [27] allows model training while keeping client data decentralized (each participating
device keeps its own local dataset, and only sends model updates or gradients to the coordinating server). However,
existing approaches to combining FL and DP make a number of assumptions that are unrealistic in real-world FL
deployments such as [10]. To highlight these challenges, we must first review the state-of-the-art in centralized DP
training, where differentially private stochastic gradient descent (DP-SGD) [1, 8, 34] is ubiquitous. It achieves optimal
error for convex problems [8]. and can also be applied to non-convex problems, including deep learning, where the
privacy amplification offered by randomly subsampling data to form batches is critical for obtaining meaningful DP
guarantees [1, 5, 8, 25, 37].

Attempts to combine FL and the above lines of DP research have been made previously; notably, [3, 28] extended
the approach of [1] to FL and user-level DP. However, these works and others in the area sidestep a critical issue: the
DP guarantees require very specific ling or schemes ing, for example, that each client participates
in each iteration with a fixed probability. While possible in theory, such schemes are incompatible with the practical
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Abstract

Federated learning (FL) is a machine learning setting where many clients (e.g. mobile devices or
whole organizations) collaboratively train a model under the orchestration of a central server (e.g. service
provider), while keeping the training data decentralized. FL embodies the principles of focused data
collection and minimization, and can mitigate many of the systemic privacy risks and costs resulting
from traditional, centralized machine learning and data science approaches. Motivated by the explosive
growth in FL research, this paper discusses recent advances and presents an extensive collection of open
problems and challenges.
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