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Part I: What is Federated Learning?



Billions of phones & IoT devices constantly generate data

Data enables better products and smarter models

Data is born at the edge



Data processing is moving on device:
● Improved latency
● Works offline
● Better battery life
● Privacy advantages

E.g., on-device inference for mobile 
keyboards and cameras.

Can data live at the edge?



Data processing is moving on device:
● Improved latency
● Works offline
● Better battery life
● Privacy advantages

E.g., on-device inference for mobile 
keyboards and cameras.

Can data live at the edge?

What about analytics?
What about learning?
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What makes a good application?

● On-device data is more relevant 
than server-side proxy data

● On-device data is privacy 
sensitive or large

● Labels can be inferred naturally 
from user interaction

Example applications

● Language modeling for mobile 
keyboards and voice recognition

● Image classification for 
predicting which photos people 
will share

● ...

Applications of cross-device federating learning



Gboard: next-word prediction

Federated RNN (compared to prior n-gram model):
● Better next-word prediction accuracy: +24%
● More useful prediction strip: +10% more clicks

Federated model
compared to baseline

A. Hard, et al. Federated 
Learning for Mobile Keyboard 
Prediction. arXiv:1811.03604



Other federated models in Gboard

Emoji prediction
● 7% more accurate emoji predictions
● prediction strip clicks +4% more
● 11% more users share emojis!

Action prediction
When is it useful to suggest a gif, sticker, or 
search query?
● 47% reduction in unhelpful suggestions
● increasing overall emoji, gif, and sticker 

shares

Discovering new words
Federated discovery of what words people 
are typing that Gboard doesn’t know.

T. Yang, et al. Applied Federated 
Learning: Improving Google Keyboard 
Query Suggestions. arXiv:1812.02903

M. Chen, et al. Federated Learning 
Of Out-Of-Vocabulary Words. 
arXiv:1903.10635

Ramaswamy, et al. Federated Learning 
for Emoji Prediction in a Mobile 
Keyboard. arXiv:1906.04329.



"Instead, it relies primarily on a technique called 
federated learning, Apple’s head of privacy, Julien 
Freudiger, told an audience at the Neural Processing 
Information Systems conference on December 8. 
Federated learning is a privacy-preserving 
machine-learning method that was first introduced 
by Google in 2017. It allows Apple to train different 
copies of a speaker recognition model across all its 
users’ devices, using only the audio data available 
locally. It then sends just the updated models back to 
a central server to be combined into a master model. 
In this way, raw audio of users’ Siri requests never 
leaves their iPhones and iPads, but the assistant 
continuously gets better at identifying the right 
speaker."

https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/

Cross-device federated learning at Apple

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
https://www.technologyreview.com/2019/12/11/131629/apple-ai-personalizes-siri-federated-learning/


Federated learning is a machine learning setting where 
multiple entities (clients) collaborate in solving a machine 
learning problem, under the  coordination of a central server 
or service provider. Each client's raw data is stored locally and 
not exchanged or transferred; instead, focused updates 
intended for immediate aggregation are used to achieve the 
learning objective.

definition proposed in 
Advances and Open Problems in Federated Learning (arxiv/1912.04977)

Federated Learning

https://arxiv.org/abs/1912.04977


clients

server

Federated learning - defining characteristics
Data is generated locally 
and remains decentralized.  
Each client stores its own 
data and cannot read the 

data of other clients. Data 
is not independently or 
identically distributed.

A central orchestration 
server/service coordinates the 

training, but never sees raw data.
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"The University of Pennsylvania and chipmaker Intel are forming a 
partnership to enable 29 heatlhcare and medical research institutions 
around the world to train artificial intelligence models to detect brain 
tumors early."

"The program will rely on a technique known as federated learning, 
which enables institutions to collaborate on deep learning projects 
without sharing patient data. The partnership will bring in institutions in 
the U.S., Canada, U.K., Germany, Switzerland and India. The centers – 
which include Washington University of St. Louis; Queen’s University in 
Kingston, Ontario; University of Munich; Tata Memorial Hospital in 
Mumbai and others – will use Intel’s federated learning hardware and 
software."

[1] https://medcitynews.com/2020/05/upenn-intel-partner-to-use-federated-learning-ai-for-early-brain-tumor-detection/
[2] https://www.allaboutcircuits.com/news/can-machine-learning-keep-patient-privacy-for-tumor-research-intel-says-yes-with-federated-learning/
[3] https://venturebeat.com/2020/05/11/intel-partners-with-penn-medicine-to-develop-brain-tumor-classifier-with-federated-learning/
[4] http://www.bio-itworld.com/2020/05/28/intel-penn-medicine-launch-federated-learning-model-for-brain-tumors.aspx

Cross-silo federated learning from Intel

https://www.allaboutcircuits.com/news/can-machine-learning-keep-patient-privacy-for-tumor-research-intel-says-yes-with-federated-learning/
https://medcitynews.com/2020/05/upenn-intel-partner-to-use-federated-learning-ai-for-early-brain-tumor-detection/#:~:text=The%20University%20of%20Pennsylvania%20and,to%20detect%20brain%20tumors%20early.
https://www.businesswire.com/news/home/20200511005132/en/%C2%A0Intel-Works-University-Pennsylvania-Privacy-Preserving-AI-Identify
http://www.bio-itworld.com/2020/05/28/intel-penn-medicine-launch-federated-learning-model-for-brain-tumors.aspx
https://venturebeat.com/2020/05/11/intel-partners-with-penn-medicine-to-develop-brain-tumor-classifier-with-federated-learning/


"Federated learning addresses this challenge, enabling different 
institutions to collaborate on AI model development without sharing 
sensitive clinical data with each other. The goal is to end up with 
more generalizable models that perform well on any dataset, 
instead of an AI biased by the patient demographics or imaging 
equipment of one specific radiology department."

[1] https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
[2] https://venturebeat.com/2020/04/15/healthcare-organizations-use-nvidias-clara-federated-learning-to-improve-mammogram-analysis-ai/
[3] https://medcitynews.com/2020/01/nvidia-says-it-has-a-solution-for-healthcares-data-problems/
[4] https://venturebeat.com/2020/06/23/nvidia-and-mercedes-benz-detail-self-driving-system-with-automated-routing-and-parking/ 

Cross-silo federated learning from NVIDIA

https://venturebeat.com/2020/04/15/healthcare-organizations-use-nvidias-clara-federated-learning-to-improve-mammogram-analysis-ai/
https://blogs.nvidia.com/blog/2020/04/15/federated-learning-mammogram-assessment/
https://blogs.nvidia.com/blog/2019/10/13/what-is-federated-learning/
https://medcitynews.com/2020/01/nvidia-says-it-has-a-solution-for-healthcares-data-problems/
https://venturebeat.com/2020/06/23/nvidia-and-mercedes-benz-detail-self-driving-system-with-automated-routing-and-parking/
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available client devices

coordinating
server
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X
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(institutions, data silos),

high availability

Cross-silo federated learning



clients cannot be indexed 
directly (i.e., no use of 

client identifiers) 

coordinating
server

Cross-device federated learning

X

coordinating
server

each client has an identity or 
name that allows the system to 

access it specifically

Cross-silo federated learning

Alice

Bob

Updates are 
anonymous

Selection is 
coarse-grained



Server can only access a (possibly 
biased) random sample of clients on 

each round.

Large population => most clients only 
participate once.

coordinating
server

Cross-device federated learning

coordinating
server

Most clients participate in every 
round.

Clients can run algorithms that 
maintain local state across rounds.

Cross-silo federated learning

round 1 round 1



coordinating
server

Cross-device federated learning

coordinating
server

Cross-silo federated learning

round 2
(completely new set of devices participate)

round 2
(same clients)

Server can only access a (possibly 
biased) random sample of clients on 

each round.

Large population => most clients only 
participate once.

Most clients participate in every 
round.

Clients can run algorithms that 
maintain local state across rounds.



communication is often the 
primary bottleneck

coordinating
server

Cross-device federated learning

X

coordinating
server

communication or computation 
might be the primary 

bottleneck

Cross-silo federated learning



coordinating
server

Cross-device federated learning

X

coordinating
server

Cross-silo federated learning

features
ex

am
pl

es

horizontally partitioned data

features

ex
am

pl
es

horizontal or
vertically partitioned data



Distributed datacenter machine learning 

servers

cloud 
data

engineer



● Clients - Compute nodes also holding local data, usually belonging to one 
entity:

○ IoT devices
○ Mobile devices
○ Data silos
○ Data centers in different geographic regions

● Server - Additional compute nodes that coordinate the FL process but don't 
access raw data. Usually not a single physical machine.

FL terminology



Characteristics of the federated learning setting

Datacenter distributed learning Cross-silo 
federated learning

Cross-device 
federated learning

Setting Training a model on a large but 
"flat" dataset. Clients are compute 
nodes in a single cluster or 
datacenter.

Training a model on siloed data. 
Clients are different organizations 
(e.g., medical or financial) or 
datacenters in different geographical 
regions.

The clients are a very large number of mobile 
or IoT devices.

Data distribution Data is centrally stored, so it can 
be shuffled and balanced across 
clients. Any client can read any 
part of the dataset.

Data is generated locally and remains decentralized.  Each client stores its own 
data and cannot read the data of other clients. Data is not independently or identically 
distributed.

Orchestration Centrally orchestrated. A central orchestration server/service organizes the training, but never sees raw data.

Wide-area 
communication 

None (fully connected clients in 
one datacenter/cluster).

Typically hub-and-spoke topology, with the hub representing a coordinating service 
provider (typically without data) and the spokes connecting to clients.

Data availability All clients are almost always available. Only a fraction of clients are available at any 
one time, often with diurnal and other 
variations.

Distribution scale Typically 1 - 1000 clients. Typically 2 - 100 clients. Massively parallel, up to 1010 clients.

Adapted from Table 1 in  Advances and Open Problems in Federated Learning (arxiv/1912.04977)

https://arxiv.org/abs/1912.04977


Characteristics of the federated learning setting

Datacenter distributed learning Cross-silo 
federated learning

Cross-device 
federated learning

Addressability Each client has an identity or name that allows the system to access it 
specifically.

Clients cannot be indexed directly (i.e., no use 
of client identifiers) 

Client statefulness Stateful --- each client may participate in each round of the computation, 
carrying state from round to round. 

Generally stateless --- each client will likely 
participate only once in a task, so generally 
we assume a fresh sample of never before 
seen clients in each round of computation.

Primary bottleneck Computation is more often the 
bottleneck in the datacenter, where 
very fast networks can be 
assumed.

Might be computation or 
communication.

Communication is often the primary 
bottleneck, though it depends on the task. 
Generally, federated computations uses wi-fi 
or slower connections.

Reliability of clients Relatively few failures. Highly unreliable --- 5% or more of the clients 
participating in a round of computation are 
expected to fail or drop out (e.g., because the 
device becomes ineligible when battery, 
network, or idleness requirements for 
training/computation are violated).

Data partition axis Data can be partitioned / 
re-partitioned arbitrarily across 
clients.

Partition is fixed. Could be 
example-partitioned (horizontal) or 
feature-partitioned (vertical).

Fixed partitioning by example (horizontal).

Adapted from Table 1 in  Advances and Open Problems in Federated Learning (arxiv/1912.04977)

https://arxiv.org/abs/1912.04977


Fully decentralized (peer-to-peer) learning

engineer

?



Fully decentralized (peer-to-peer) learning



Federated learning Fully decentralized 
(peer-to-peer) learning

Orchestration A central orchestration server/service organizes 
the training, but never sees raw data.

No centralized orchestration.

Wide-area 
communication pattern

Typically hub-and-spoke topology, with the hub 
representing a coordinating service provider 
(typically without data) and the spokes 
connecting to clients.

Peer-to-peer topology.

Adapted from Table 3 in  Advances and Open Problems in Federated Learning (arxiv/1912.04977)

Characteristics of FL vs decentralized learning

https://arxiv.org/abs/1912.04977


Cross-Device Federated Learning
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data device

Need me?

Federated learning 



data device

Need me?

Not now

Federated learning 



data device

Need me?

Yes!

Federated learning 
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data device

initial model

engineer

updated
model

Privacy principle
Focused collection

Devices report only what is 
needed for this computation

Federated learning 



data device

initial model

engineer

updated
model

Privacy principle
Ephemeral reports

Server never persists
per-device reports

Federated learning 



data device

combined
model

∑

initial model

engineer

updated
model

Privacy principle
Only-in-aggregate 
Engineer may only 
access combined 

device reports

Federated learning 
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(another)
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(another)
initial model

∑

Typical orders-of-magnitude

100-1000s of clients per round

1000s of rounds to convergence

1-10 minutes per round

engineer

Federated learning 



data device

(another)
combined

model

(another)
initial model

∑

engineer

Devices run multiple 
steps of SGD on their 
local data to compute 

an update.

Server computes 
overall update using 
a simple weighted 

average.

McMahan, et al. Communication-Efficient Learning of Deep 
Networks from Decentralized Data. AISTATS 2017.

Federated Averaging (FedAvg) algorithm



Beyond Learning: Federated 
Analytics



Beyond learning: federated analytics 
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Federated analytics is the practice of applying data science methods to 
the analysis of raw data that is stored locally on users’ devices. Like 
federated learning, it works by running local computations over each 
device’s data, and only making the aggregated results — and never any 
data from a particular device — available to product engineers. Unlike 
federated learning, however, federated analytics aims to support basic 
data science needs. 

definition proposed in https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html

Federated analytics 

https://ai.googleblog.com/2020/05/federated-analytics-collaborative-data.html


● Federated histograms over closed sets
● Federated quantiles and distinct element counts 
● Federated heavy hitters discovery over open sets
● Federated density of vector spaces
● Federated selection of random data subsets
● Federated SQL
● Federated computations? 
● etc...

Federated analytics



Similar to learning, the 
on-device computation is a 
function of a server state

Interactive algorithms

Unlike learning, the 
on-device computation does 

not depend on a server state

Non-interactive algorithms

coordinating
server

coordinating
server

Zhu et. al. Federated Heavy Hitters Discovery 
with Differential Privacy AISTATS’20.

Erlingsson et. al. RAPPOR: Randomized 
Aggregatable Privacy-Preserving Ordinal 
Response CCS’14.



Part II:  Privacy for Federated 
Learning and Analytics



Aspects of Privacy
The why, what, and how of using data.

Why?
Transparency & consent

Why use this data? The user understands and supports the 
intended use of the data.

What?
Limited influence of any individual

What is computed? When data is released, ensure it does not 
reveal any user's private information. 

How?
Security & data minimization

How and where does the computation happen? Release data to 
as few parties as possible.  Minimize the attack surface where 
private information could be accessed.
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Utility

goal 1. Policy

2. New Technology

Push the pareto frontier 
with better technology.

Make achieving high 
privacy and utility 
possible with less work.

ML on sensitive data: privacy vs. utility (?)

Computation, effort
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Encryption, at rest and on the wire

How
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Local 
Differential 

Privacy
Warner. Randomized response. 1965.
Kasiviswanathan, et. al. What can we learn privately? 2011.
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Differential 

Privacy

Dwork and Roth. The Algorithmic 
Foundations of Differential Privacy. 2014.
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... the released 
models and 

metrics?

Empirical privacy 
auditing 

(e.g. secret sharer, 
membership inference)

… the deployed 
model?

with access to ... 
What private information might an actor learn

Nicholas Carlini, Chang Liu, Úlfar Erlingsson, Jernej Kos, Dawn Song. 
The Secret Sharer: Evaluating and Testing Unintended Memorization in Neural Networks. 2018.
Congzheng Song, Vitaly Shmatikov. Auditing Data Provenance in Text-Generation Models. 2018.
Matthew Jagielski, Jonathan Ullman, Alina Oprea. Auditing Differentially Private Machine Learning: How Private is Private SGD? 2020.

How

What
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Distributing Trust for Private Aggregation
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Trusted “third party” Trusted Execution Environments
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Trust via Cryptography1 2 3

∑

Distributing Trust for Private Aggregation

third-party

trusted 
hardware

cryptography
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The antiparticles cancel when summing contributions
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Revealing the sum.
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Confidential + Proprietary

But there are two challenges...
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1. These vectors are big!  
   How do users agree efficiently? 

Alice
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2. What if someone drops out? 
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Because gx are public, we can 
share them via the server.
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Pairwise Diffie-Hellman Key Agreement
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Secrets are scalars, but….

  Shared secret!
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Secrets are scalars, but….

Use each secret to seed a 
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) →       = -   Shared secret!

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion
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Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but….

Use each secret to seed a 
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) →       = -
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1. Efficiency via pseudorandom generator

2. Mobile phones typically don't support 
peer-to-peer communication anyhow.

3. Fewer secrets = easier recovery.

Pairwise Diffie-Hellman Key Agreement + PRNG Expansion

Secrets are scalars, but….

Use each secret to seed a 
pseudorandom number generator,
generate paired antiparticle vectors.

PRNG(gba) →       = -

Alice

Bob

Carol



k-out-of-n Threshold Secret Sharing
Goal: Break a secret into n pieces, called shares.  
● <k shares: learn nothing
● ≥k shares: recover s perfectly.

s

2-out-of-3 secret sharing: Each line is 
a share

x-coordinate of the 
intersection is the secret
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Goal: Break a secret into n pieces, called shares.  
● <k shares: learn nothing
● ≥k shares: recover s perfectly



k-out-of-n Threshold Secret Sharing

ss s

Goal: Break a secret into n pieces, called shares.  
● <k shares: learn nothing
● ≥k shares: recover s perfectly
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Users make shares of their secrets 
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Bob
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And exchange with their peers
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Enough honest users + a high enough threshold
   ⇒ dishonest users cannot reconstruct the secret.
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Server aggregates users' 
updates, but cannot inspect 
the individual updates.

∑

# Params Bits/Param # Users Expansion

220 = 1 m 16 210 = 1 k 1.73x

224 = 16 m 16 214 = 16 k 1.98x

Communication Efficient

Secure
⅓ malicious clients 
+ fully observed server

Robust

⅓ clients can drop out

Interactive Cryptographic Protocol
Each phase, 1000 clients + server interchange 
messages over 4 rounds of communication.

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, 
S. Patel, D. Ramage, A. Segal, K. Seth.  Practical Secure 
Aggregation for Privacy-Preserving Machine Learning. CCS’17.

Secure Aggregation 



CCS 2017
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, 
S. Patel, D. Ramage, A. Segal, K. Seth.  Practical Secure 
Aggregation for Privacy-Preserving Machine Learning. 

Complete Graph
of pairwise masks, secret shares



Random Harary(n, k)
 n clients, k neighbors, random node assignments

k = O(log n)

CCS 2017
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, 
S. Patel, D. Ramage, A. Segal, K. Seth.  Practical Secure 
Aggregation for Privacy-Preserving Machine Learning. 

CCS 2020
J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova
Secure Single-Server Aggregation with (Poly)Logarithmic 
Overhead. 

Complete Graph
of pairwise masks, secret shares



Secure Aggregation 

K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. 
McMahan, S. Patel, D. Ramage, A. Segal, K. Seth.  Practical 
Secure Aggregation for Privacy-Preserving Machine 
Learning.  CCS 2017.

Protocol Server Client

Computation Communication Computation Communication

Bonawitz et al. 
(CCS 2017)

Bell et al.
(CCS 2020)

Insecure     
Solution

J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova
Secure Single-Server Aggregation with (Poly)Logarithmic 
Overhead. CCS 2020.



Random Harary(n, k)
 n clients, k neighbors, random node assignments

k = O(log n)

CCS 2017
K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, 
S. Patel, D. Ramage, A. Segal, K. Seth.  Practical Secure 
Aggregation for Privacy-Preserving Machine Learning. 

CCS 2020
J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova
Secure Single-Server Aggregation with (Poly)Logarithmic 
Overhead. 

Complete Graph
of pairwise masks, secret shares

Cost of 1 million cohorts, each of 1000 clients Cost of a single cohort of 1 billion clients

Cheaper!



Sparse Federated Learning & Analytics

● Embedding-based models

○ Word-based Language Models

○ Object Recognition

● Compound models

○ Multiple fixed domains 
e.g. locations, companies, etc

○ Genre/cluster models

○ Pluralistic models

● Federated Analytics



Sparse Federated Learning & Analytics

∑

Sparse
Aggregation

Sliced Model 
Download



Sparse Federated Learning & Analytics

∑

Private Sliced 
Model Download

Private
Sparse

Aggregation
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Private Sparse Aggregation // Shuffling via Secure Aggregation

← Vector with message-sized slots

← Clients choose a random slot



Private Sparse Aggregation // Shuffling via Secure Aggregation

← Vector with message-sized slots

← Clients choose a random slot

Birthday "Paradox": conflicts are likely, even with quite large vectors



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

← (pseudonym+message)-sized slots

← Clients choose random pseudonym, 
     map to k slots using hash functions
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← Server recovers (pseudonym+message) 
     for all non-conflict slots
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Invertible Bloom Lookup Tables (IBLTs)

← Server recovers (pseudonym+message) 
     for all non-conflict slots
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     De-conflicting more slots



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

← Server recovers (pseudonym+message) 
     for all non-conflict slots

     Then removes all copies from vector

     De-conflicting more slots

     Repeat until all messages extracted
     (or no more progress)



Private Sparse Aggregation // Shuffling via Secure Aggregation

Invertible Bloom Lookup Tables (IBLTs)

J. Bell, K. Bonawitz, A. Gascon, T. Lepoint, M. Raykova
Secure Single-Server Aggregation with (Poly)Logarithmic 

Overhead. CCS 2020.

Vector Length ~= 1.3x messages!

Figure 4. Expected fraction of messages recovered and probability 
of recovering all messages against the length 𝑙 of the vectors 
used. For this the number of clients is 𝑛 = 10000 and each inserts 
their message in 𝑐 = 3 places.



Differentially Private Federated 
Training



Differential privacy is the statistical science of trying to learn 
as much as possible about a group while learning 
as little as possible about any individual in it.

Andy Greenberg
Wired 2016.06.13

Differential
Privacy

https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
https://www.wired.com/2016/06/apples-differential-privacy-collecting-data/
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Query Model 
M(D)

Query Model 
M(D')

D

D'

(ε, δ)-Differential Privacy: The distribution of the 
output M(D) (a trained model) on database (training 
dataset) D is nearly the same as M(D′) for all 
adjacent databases D and D′

∀S:    Pr[M(D)∊S] ≤ exp(ε) ∙ Pr[M(D′)∊S] + δ

Differential
Privacy



Query Model 
M(D)

Query Model 
M(D')

D

D'

(ε, δ)-Differential Privacy: The distribution of the 
output M(D) (a trained model) on database (training 
dataset) D is nearly the same as M(D′) for all adjacent 
databases D and D′

adjacent: Sets D and D’ differ only by 
presence/absence of one example

M. Abadi, A. Chu, I. 
Goodfellow, H. B. 
McMahan, I. Mironov, K. 
Talwar, & L. Zhang. Deep 
Learning with Differential 
Privacy. CCS 2016.

Record-level
Differential
Privacy



Query Model 
M(D)

Query Model 
M(D')

D

D'

(ε, δ)-Differential Privacy: The distribution of the 
output M(D) (a trained model) on database (training 
dataset) D is nearly the same as M(D′) for all adjacent 
databases D and D′

adjacent: Sets D and D’ differ only by 
presence/absence of one example user

H. B. McMahan, et al. 
Learning Differentially 
Private Recurrent 
Language Models. 
ICLR 2018.

User-level
Differential
Privacy
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1. Sample a batch of clients uniformly at random

Iterative training with differential privacy



D
2. Clip each update to maximum L2 norm S

Clip to S

Clip to S
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r1780

Iterative training with differential privacy
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3. Average clipped updates

Average

Clip to S

Clip to S
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Iterative training with differential privacy



D
4. Add noise

+
Average

Clip to S

Clip to S

r4
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r10

r1780

Iterative training with differential privacy



5. Incorporate into model

Update 
model

D

+
Average

Clip to S

Clip to S

r4

r7

r10

r1780

Iterative training with differential privacy



There are many details and possibilities



data device

∑

updated 
model

engineer

(another) 
combined 

model

initial model

Back to federated learning



data device updated model

model

+∑

Clip updates to limit 
a user’s contribution 
(bounds sensitivity)

Server adds noise 
proportional to 
sensitivity when 

combining updates

Differentially private federated learning 



(4.634, 1e-9)-DP with 763k users
(1.152, 1e-9)-DP with 1e8 users

𝔼[users per minibatch] = 5k
𝔼[tokens per minibatch] = 8m

Differential privacy for language models
LSTM-based predictive language model.  
10K word dictionary, word embeddings ∊ℝ96, state ∊ℝ256, parameters: 1.35M.  Corpus=Reddit posts, by author.

H. B. McMahan, et al. Learning 
Differentially Private Recurrent 
Language Models. ICLR 2018.



data device
updated model

model

+

Clip update and add 
noise on each 

device

∑

Locally differentially private federated learning 

Warner. Randomized response. 1965.
Kasiviswanathan, et. al. What can we learn privately? 2011.



Can we combine the best of both worlds?

Central DP: 

easier to get high utility with good privacy

Local DP: 

requires much weaker trust assumptions



Distributed Differential Privacy



Trusted “third party” Trusted Execution Environments

∑

+

+∑

+

Trust via Cryptography1 2 3

∑

Distributing Trust for Private Aggregation

third-party

trusted 
hardware

cryptography



data device

differentially 
private

updated model

model

+

Clip update and add 
noise on each 

device

Noisy/Clipped 
updates are 

securely summed

∑

𝜀local = 1

+
𝜀central = 0.1

Distributed DP via secure aggregation



Distributed DP via secure aggregation

Challenges faced

● SecAgg operates on a finite group (finite precision) with modulo arithmetic
● Discrete Gaussian random variables are not closed under summation
● Discrete distributions with finite tails lead to catastrophic privacy failures
● Tight DP accounting needs to be fundamentally rederived

Solutions needed

● A family of discrete mechanisms that mesh well with SecAgg’s modulo arithmetic
● Closed under summation or have tractable distributions upon summation   
● Can be sampled from exactly and efficiently using random bits 
● Exact DP guarantees with tight accounting and no catastrophic failures



The distributed discrete Gaussian mechanism

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



The distributed discrete Gaussian mechanism

L2 Clip Add Discrete 
Gaussian

Modulo 
ClippingDiscretize

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



The distributed discrete Gaussian mechanism

L2 Clip Add Discrete 
Gaussian

Modulo 
ClippingDiscretize

Random 
Rotation

Randomized 
QuantizationScale



The distributed discrete Gaussian mechanism

...
... ∑L2 Clip Add Discrete 

Gaussian
Modulo 
ClippingDiscretize Back to Reals

Inverse 
ScaleDequantization Inverse 

Rotation



Federated EMNIST Classification

● Classifying handwritten digits/letters grouped by their writers
● Total writers/clients = 3400, number of clients per round = 100
● 671,585 training examples, 62 classes, model size = 1M parameters 

Centralized Continuous Gaussian
Distributed Discrete Gaussian (18 bits)
Distributed Discrete Gaussian (16 bits)
Distributed Discrete Gaussian (14 bits)
Distributed Discrete Gaussian (12 bits)

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



StackOverflow Tag Prediction

Centralized Continuous Gaussian
Distributed Discrete Gaussian (18 bits)
Distributed Discrete Gaussian (16 bits)
Distributed Discrete Gaussian (14 bits)
Distributed Discrete Gaussian (12 bits)

● Predicting the tags of the sentences on Stack Overflow with Logistic Regression
● Total users/clients = 342477, number of clients per round = 60
● Tags vocab size = 500, Tokens vocab size = 10000, model size = 5M parameters 

The Distributed Discrete Gaussian Mechanism for Federated Learning with Secure Aggregation (on arXiv)



Precise DP Guarantees for 
Real-World Cross-Device FL
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1. Sample a batch of clients uniformly at random

Iterative training with differential privacy



● There is no fixed or known database / dataset / population size

● Client availability is dynamic due to multiple system layers and participation 
constraints

○ "Sample from the population" or "shuffle devices" don't work out-of-the-box

● Clients may drop out at any point of the protocol, with possible impacts on 
privacy and utility

For privacy purposes, model the environment (availability, dropout) as the 
choices of Nature (possibly malicious and adaptive to previous mechanism 
choices)

Challenges



● Robust to Nature's choices (client availability, client dropout) in that privacy 
and utility are both preserved, possibly at the expense of forward progress.

● Self-accounting, in that the  server  can  compute a precise upper bound on 
the (ε,δ) of the mechanism using only information available via the protocol.

● Local selection, so most participation decisions are made locally, and as few 
devices as possible check-in to the server

● Good privacy vs. utility tradeoffs

Goals





Clients Training 
Round

Random 
Check-Ins

1

2

... 

Random Check-ins



Part III: Other topics



Improving efficiency and effectiveness

client
devices

server

engineer

model
deployment

federated 
training

model
development

Reduce wall-clock training 
time?

Do more with fewer 
devices or less resources 

per device?

Make trained models 
smaller?

Personalize for each 
device?

Support ML workflows like 
debugging and 

hyperparameter searches?

Solve more types of ML 
problems (RL, unsupervised 
and semi-supervised, active 

learning, ...)?



Ensuring fairness and addressing sources of bias

client
devices

server

engineer

model
deployment

federated 
training

model
development

Bias in device availability?

Inference population 
different than training 

population?

Bias in training data 
(amount, distribution)?

Bias in which devices 
successfully send updates?



Robustness to attacks and failures

client
devices

server

engineer

model
deployment

federated 
training

model
development

Compromised device 
sending malicious 

updates

Devices training on 
compromised data (data 

poisoning)

Device dropout, data 
corruption in transmission

Inference-time evasion 
attacks



Advances and Open Problems in FL

58 authors from 25 top institutions

arxiv.org/abs/1912.04977

https://arxiv.org/abs/1912.04977

